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ABSTRACT

A new adaptive grid method is presented which derives its
motivation from the Moving Finite Element method (MFE) and makes
use of the relationship with MFE to derive its discrete form.

A framework is developed which encompasses both the new adaptive
method (which we call here the Mobile Element Method (MEM]) and

the MFE method. Analysis and results of both methods is presented.



1. INTRODUCTION

We shall study hyperbolic systems of conservation laws of the

form

u, + f_ =20 , (1.1)

for example the Euler equations of Aerodynamics.

Baines & Wathen [ 11, Mosher [ 2] have attempted to find
approximate solutions of these equations using the Moving Finite Element
(MFE) Method of Miller [ 3], while Harten & Hyman [ 41, Winkler [ 5],
and others have approached solutions of the equations using moving or
adaptive finite difference methods. Many authors have successfully
applied adaptive grid methods to scalar eguations in 1-D but the
generalisation to systems and to higher dimensions has proved a
stumbling block. Here we concentrate on a method which is capable
of both kinds of generalisation which has been derived directly from a
local form of the MFE method. Wg present first the MFE method in the

context of the scalar equation
u +-F_=_O [1-2]

with particular emphasis on its local formulation (see Baines [7 1J.
In the case of fixed finite elements an approximation to the

function u 1s represented by

Vo= 2 a.{t)a.(x,s) (1.3)
| J

where aj[t) are the amplitudes and aj(x,s) are the basis functions
(see Fig. 1). However, in the Moving Finite Element approximation the nodes
are allowed to move with the solution and this nodal movement is built

into the basis functions. Instead of (1.3) we have

v o= 2 aj(t]aj(x,s(t]] (1.4)



(see Miller & Miller [ 81, Wathen & Baines [401) where aj(tJ are the
amplitudes and aj's the basis functions which move with the nodes.

The variation of nodal position with time is represented by s(t)

(see Fig. 2). The time derivative approximation for the fixed finite

element method is found by differentiating (1.3) with respect to time t, which
gives

aa . [t]
3\/ ..
2

o Qj(x,sl " (1.5)

ot

Following Miller [ 31, Lynch [ 9] and Baines [ 6] the time derivative

for the MFE method can be derived from differentiating (1.4} with respect

to time t. The result is
v . 3V .
== 15 (a. - & 8.)q. . (1.8)
st L (8 ax 3%

In order to clarify (1.6) an alternative description is presented which
explains the transformation which is implicit in differentiating (1.4).
First let us consider linear basis functions aj(x,s(t)]. In the

neighbouring elements of node

x-a._,I
OI.j =;—_—;—'— X € [Sj_,I;Sj]
J oJ
(5j+1—x)
o, = ———— x € [s,,s,, ,]
3 Isj+1-sj) 3773+

(See Fig. 2). The aj are clearly dimensionless variables, and are

such that 0 =a =1, i.e. in an element [Sj—1’5j]’
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n
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I
Let £ " Te.-s, )
J 31

so that v = Vj—1[1 -g) + vy g

and 1-g, ¢ are now the local basis functions [c.f. Baines (6)]
bq = 178 bz =& -

Now if the grid moves with a speed X then the local basis functions
move with the grid (Fig. 37) with no variations in the dimensionless
variable &.Therefore the total derivative of & with respect to time

t is zero. Thus

where 5% denotes the mobile derivative moving with the local frame

of reference, and therefore

Do{,j
-ﬁ= 0 . (1.7]
Now instead of taking the partial derivative of (1.4) with respect
to time t we take the total derivative [5%] of (1.4) to give
Da Dy, . Da,
Dv _ =y, +a e ) =i (1.8)
Dt L | Dt %5 j "Dt Dt %5 ’

by (1.7).



Now

v _Dv_Dx %
= "0tk (1.9)

and, assuming an isoparametric mapping for x of the form

= , .10
X Exjaj(a (1.10)
3
Dx D
Ez} L (1.11)

Using (1.11), (1.8) in (1.8) we have

Y o ROV [P Y (1.12)
ot j Dt ] =73 j ox ' ’
Clearly (1.12) is identical to (1.6) with Sj = xj. But now
the transformation is absclutely clear, and we see that the MFE method
relies on (1.9) to build in the mobile operator. Although we have
considered linear basis functions the result is also clear for higher dimensions

and higher order basis functions. We note that the identity (1.9) can be used

to rewrite (1.2) as
—_5(_8;+-FX=O. (1.13)

We shall be returning to this form of the equation throughout this
analysis.

Now following Baines [6 1, [7 1, we briefly describe the local MFE
procedure in 1-D. We start with (1.12) which may be written in the local

element form

)¢

2
z (aki _(kaski ki

v = L
t K 1

it

2
Z DA
X 1:1 _



where

A 20D B (1.14)
Wiy Ao Bkt T VK
Da

and ot is denoted by ék. For linear basis functions (VXJK is constant

in each element. The local MFE method proceeds to minimise the L2 norm

of the residual, i.e.

Vi * Follz = N8 Weabps * FUaglesly | (1.15)
Ask
OVer W . This results in matrix systems
Ckﬂk = Ek vk (1.18)
where
(

<¢k4’¢k1> <¢k4’¢hé>
c_ = (1.17)

K
ot O
Wk 7Asy i [__<¢K1’fx>_1 EY
We = ’ Ek = =
Mgl B | <t | thz

Also using (1.14) we have two equations at each node connecting the

element information in (1.16]) to the speeds [ék,ékl, namely,

T A bsy Bl = W2k sk
_ . (1.18)
! AK+1/ASK+1J °k W1, ke Bk
which can be written as
Y = W o 1.19)
where
. ( g = Rsr P I e /by
K » X * T = A Kl
l 1= A1 /88y S ] ke ke
B 78 T 8k BSK T ST Sy



and Ak = a The local MFE procedure is

k = Fk=1
to solve (1.17) for W and, following Baines [11],

W 1K = 4bK1 - 2bK2

W X -*ZI:JK,l + 4bk2

Then using (1.18) we can solve for &, 6 and 5§, in the form

Kk K

g /sy iy /88, )= (8 /08 ) gy g /0sy )

. 1788 11
a K = ,
[Ak+1/ASK+1 - AK/ASk]
. [WZK/ASk - W1k+1/ASK+1) . o
k = Th,./Bs, .~ A7hs) MFE
provided that 'Kéhil . Eéh £ 0.
k+1 K

We now evaluate the discrete form of ﬂk

(1.2) using the definition of b

rSk
b, = - 6, £ g
2 ] k1 3x X
k=1
S
k of
J b2 X I
SKk-1
| #ige = 8
F + F S
[
~ 1 (
where £ 8y J £ dx
K s

K in (1.17). 1Integrating by parts,

(1.20)

F (1.21)

for the hyperbolic equation

(1.22)

(1.23)

(1.24)



and by (1.20)

W 4f, , - Bf + 2f
W = wk1 = . R & (1.25)
k2 -4f, + 6F - 2f
If the Trapezoidal rule is used to approximate the integral f of
(1.24) then
N (f, + £ _,)
PR S il (1.26)
2
and, from (1.25),
W = [Fe ™= Pz (1.27)
" P ™ Fi1
where fk = F[uk). However, if Simpsons rule is used to approximate
$, then
T = [fk-1 + 4fk_% + fK]/S (1.28)
where
‘u, t U )
N ( k k-1
froy B f[.__ﬁ__“___ (1.29)
and (1.25) gives
Wikl T BFker T eyt Rk
(1.30)
WoK Fe " Heor T Fiea

We note that, in the Trapezoidal case using (1.268) and (1.27) > w may

1K

be interpreted as a first order forward difference approximation to the

derivative —-%; at the point k-1, while Wor may be interpreted as
a first order backward difference approximation to st at k, i.e.

ox
using (1.27)

of
= - —_— O 2
W, S[BX]k ; + 0(ps?)
5 (1.31)
WZk . %—;l + 0(As2)



Similarly, in the Simpsons rule case using (1.28) and (1.30) , w

1k
represents a second order forward difference approximation to - %;
at k-1 and Wo represents a second order backward difference
approximation to - %; at k, i.e. using (1.30)
T hﬁs[ﬁg} * Olas)® (1.32)
k=1
Wop = —as[-g—f} 1«+ 0las)®

2. THE MOBILE ELEMENT METHOD (MEM)

To introduce this method we first rewrite equations (1.18) in the

form
v’&sk . (w2k + AKS)/‘/ASK o1
VA 5|<+’|J ‘ (W'lk+'l * AK+’IE')/'AE’I<+’|

The sqguare root factors are introduced in order to maintain a conservative

scheme. This is an overdetermined system for ék’ to solve for ék in terms

of ék as a parameter, we may minimise the norm
2
% s —%_
|| D=L & - D w||2 (2.2)
with respect to ék' where
A
As, O 1) Yk TS
D = , L= > W = A . (2.3)
0 As 1 Wike1 T Tket®
k+1
This gives
A A
s ok * Wiger) e * 50 . (2.2)
K (Ask + 8 ' '

ket) LB Bypq) K

Having found ék in terms of ék‘ it now remains to choose the §

K*

Before doing this, however, let us consider eguation (2.4) in more detail.



_/lo-

We have already aobserved the form of the w’s for two types
of approximate integration in the case of the hyperbolic equation (1.2);

from equations (1.31) and (1.32), for a uniferm grid, we have

Mok T Mike1 L L8, (e
Ask + ASK+1 X
and since +
A A
A2+1 : AE - %§'+ DCAsr
k+1 k

then (2.4) represents a discrete analogue of equation (1.13). Now if

we solve the hyperbolic egquation (1.2) using characteristics, then from

(1.13) we require that %% = 0. In the corresponding discrete versian
(2.4) we should reguire that &, = 0 so that the natural choice for

k

ék, which corresponds most closely to characteristic description, is

(w + W )
8- - e o/ ose®)
Aesr T8k
= SMEM say
and a, = 0.

This might be referred to as a Lagrangian treatment, but a clear
difference arises later when we go to systems. We note here, for future

reference when we come to systems, that the same result is achieved

if we think of (2.7) as minimising |l&_[|*.
One final point to note here is that the ék of the MFE method
(1.21) can be recovered by substituting into (2.4) the § of (1.21).

MFE

We shall return to this point again in section 5 where we 1look at the
truncation error of the MFE method.

+(I+‘ u, = 0 see Parallelism Appendix 2J].

(2.5)

(2.8)

(2.7)



..']']_.

3. MEM FOR SYSTEMS OF EQUATIONS

We now consider systems of hyperbolic equations and seek an
approximate solution using a single moving grid. First we consider the

MFE method, see Wathen & Baines [10], Baines [61, Baines & Wathen [ 11.
For simplicity we demonstrate the analysis for a two component system
(although there is an immediate generalisation to n components).

For a two component system (1.1) may be written explicitly as

(13 (1), (1)  (2)
u u

. £ (u ’ ]x =0
u[2] . F(2)(u(1],U(2]] - 0
t X
As before, an elementwise minimisation over wé?), (m = 1,2), gives
(m) (m) _ _(m) _
C W, T EK (m = 1,2)
{c.f. (1.17)) with obvious generalisations of Crr Wy and Ek'

However, for a single grid we have an overdetermined system to solve

for .i, i.e.

=

1
D*M

ke =D My
(c.f. (1.18)), where now
ot - | /& 0 0 0o |, oM =1 0 A1 /as
k g k k k
(1)
0 VASK+1 0 0 1 0 1/A k+1
(2}
0 0 VASK 0 0 1 = *\ /A K
(2}
B 0 0 0] VASK"'/l_‘ _D 1 -L}<+’I/ASK+’I

(3.1)

(3.2)

(3.3)

(3.4)
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W[1)
2k

W[1]
Tk+1

W[2]
2k

(2)

Mk

Again, the square root factors are introduced to give a conservative

scheme.

1
2
|| DMy

. -1 2
y D ﬂk|[2

Now the local MFE (Baines [7 ]) proceeds to minimise

with respect to ik’ which results in the matrix system

oMy =

where

MDM =

Solving (3.8) for ik

- (

a1

N
(1), (1)
(A
A8y *ASy g o B ke
(2) 4, (2)
(A
° B8 M8k G )
2 (L)
A[1]+A(1]) -[A(2]+A[2]] z (Ak )2
ko k1 ko k1’ L
L=1 As
K
(1) (1)
Mok T Wake |
L21, @)
2k k1k+1
2 alld (LY A (L) (L)
- Mok k+1"1k+1
L=1 ésk ASK+1
in terms of w  and -ék gives

(3.5)
(3.6)
(3.7)
(L),
[Qk+1)
f‘E’va‘l i
(3.8)



_13_

(0 W L, W
(L) _ Mo * Waer? By * Beq) .
k [AsK + ASK+1] [Ask + Ask+1] k
(L)) (L) (L)
f | Mok Mkt | [Pk Pk
P L=1l Aoy BSkeq | [BSke1 B3k
K 2 L) (L), °
Bt By
L=1 Ts,,, Bs,

Comparing (3.8) and (3.10) with the corresponding scalar MFE equation
(1.21), we note that & given by (3.10) can be thought of as being

derived from minimising

A(L] A[L) W(L] W(L] 2
7ok - Mok 1k+1
5 ﬂsk+’| ASK ) lASK A5K+’I

with respect to &.
Now we follow the MEM procedure given in section 2 and starting
from (3.2) and (3.3) we regroup terms involving & in (3.3) on the right

hand side of (3.3). Then we have a different over-determined system to

solve, namely,

N=

1
D?La =D

w
1
where D° is defined in (3.4) and
(1) — — (1) (1). =
. & . 1 0 - Wor ¥ Ak g
- 1 0 ’ - (1) (1.
. (2) Wike1 T Bke1®
a 0 1
) L2) 2,
o 1] 2k K
W(Z] A[Z]é
. 1k+1 k+1™ -

norm of this matrix system with respect to &

Minimisation of the L2

results in the normal equations

(3.9)

(3.10)

(3.11)

(3.12)
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L'DLa=L w
This gives
S0 (), ()
k 2k 1k+1 %
[55K+A5K+1] (

(20 [ (), (@)
K 2k Tk+1

[ASK+ASK+1] [ASK+A8K+1J
Now, however, we cannot choose a unigue & such that a
instead we can proceed by minimising
(L) P + . (L),2
sl I -3 e

(c.f. (2.7)) with respect to s

with respect to $§,_, which results in

K

2
- (I R (I I (B
S R Chu b (i

-
() ) (1) (1)
L Wok T Wikeq
ék+
(2) (2) 2)  (2)
Bt Bq Wor Wik

W(L]
Tk+1

)

(A + A

2 2
- (L) (L) ;
1 ko

o2

ASK*ASK 4]

(2)
k

(2)),
" Ak )k

. (1)

That is, we minimise

Again we recall the observations of section 1 (c.f.

equations (3.14) and (3.15) are a discrete analogue of the differential

equation system (see also (2.5)},(2.6))

Du[L] a_F(-LJ au[L]

= - +é

Dt 9% X

(L

1,2)

Sk

(3.

(3.

(3.

(3.

(3.

(1.32)) & see

13)

14)

15)

.16)

17)

18)

that

.19)
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{(c.f. (1.1)), and that the minimisation procedure is the discrete

:

analogue of minimising

810[L) ) au(LJ
X X

L

with respect to &. We emphasise that the left hand side of (3.20) is

(L)

the sum of the sguares of the mobile derivatives ot

this quantity we obtain the best mean path, i.e. the one which is nearest

, and in minimising

(3.20)

to a global mean "characteristic”. This minimisation also aids stability since

the sum of the total time derivatives have been minimised {also see below].

We note that the differential form of & obtained from minimising (3.20)

and corresponding to (3.18) is

v BF(L) au[LJ
L X ox
2 BU[L] au(L]
L X ax
aLl[L)
Further, if we take the dot product of (3.19) with , then in
X
au (L) Du (L)
vector notation =" oy — . Jbu
ronota X |3x ' Dt Dt
au Du ag Bi au au
ox ’ Dt B T Bx ’ ax S X ’ %
and by (3.21)
QE DE
—3;- . D_t. = D

Clearly the discrete analogue can alsc be achieved i.e.

(L), . (L)

e I

1

I ~1N
—
—
—

L

(3.21)

(3.22)

(3.23)
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Equation (3.22) 1llustrates that we may eliminate one of the

unknown mobile operators ééL) from the equations, i.e. we may obtain
one ééL) using a linear combination of the other operators. [This

result is consistent with applying the moving grid method to one eguation].

For example, suppose we take the Euler eguations: we may choose

where p 1s the density and m the momentum.

Although this elimination is clearly possible this approach
effectively chooses a specific § tied to the density equation only
and has lost the good stability property of (3.21) (see also Baines &
Wathen [11).

Returning now to equations (3.22) and (3.23), and the previously
described Mobile Element Method (MEM), (3.23) might also be used as
a constraint condition for the local MFE method of Baines [ 71; the

SMFE would then clearly be attempting to match (3.21).

2
We can use (3.22) to obtain %% Take the dot product of
(L)
(3.19) with e giving
Du 2 DH DE of Bu au DE
Dt “Bt "DEC T ax Dt TS ax Dt 65,250
which, by (3.22),
af Du
C T 3x | Dbt
of af au
= = . —;+é;
X [ ax X ]
using (3.21) 9f  3uy®
_fé.af_ aX | Bx




_’|7_

and therefore

.2 2

Du

Dt

af
(1 - cos?g)

ax

[ix . gx)z

(u_su J(Ff «Ff ]
=X =X =X

where cos20 = <1

For § # 0,

2 2 2

Du

Dt

of
X

u
ot

and this is a further condition consistent with the scalar case,

and implies stability of the mobile operators in the steady state.

Shock Speed

So far we have not discussed details of shock capturing for the
MEM. Basically it will use the same procedure as that used in MFE
(another advantage of staying close to MFE in the formulation).

The minimisation over & described above (3.20) can also be
applied to the system of Rankine-Hugoniot shock jump equations giving
the "best” speed for the conditions on 5. For a system with a unigue

shock speed S, each equation demands that

] (L

1t
LN
-

.,N)

where

Ly, _ () (L)
[a 1 = a. - a,
il i-1

In the MFE (Wathen & Baines (10== a simple average of the equations (3.25)

is used to obtain S

»

ety

[a[L]]

) n
i.e. Syee = = )
MFE n =

Following the MEM procedure (c.f. (3.21)) then at the shock SMEM

is chosen to minimise

(3.25)
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(L) (L)yy2
Ista™="1 - £,

with respect to S, which gives
E[f[LJ][a[L)]

S =
MEM %[a(LJ

1lab]

which determines a unique shock speed compatible with the grid speed of
(3.21).

Finally, we end this section on a similar "note” to the end of
section 2. Comparing equations (3.14) (3.15) (3.18) with (3.8) (3.10)
we see that the equations for ék in terms of ék are identical for
both the MFE and MEM methods. We can easily recover MFE from MEM
by using 3 in place of éMEM' We have already seen that the same

MFE

is true for the scalar case (c.f. §2).

4.(A) A SIMPLE LINEARISED STABILITY ANALYSIS

Let us suppose we have a linear system of decomposed characteristic

eqguations,

S, g
t X
J(2) @2
t X

If we apply MFE or MEM using a single grid to this system then, as
(L)
v

A is linear
wil - [y wy o)
W | = A (vK Viq?
w(L] A(L][V[LJ B V[LJJ
2k |” k k-1

and by (3.39) (3.14) (3.15) we see that for this linearised case

(L) (L) (L) (L)
o8 o oa 2t Vi V-1 T VK1
K K (As, + As )
k K+

(3.26)

(3.27)

(4.1)

(4.2)
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We make the following observations (which clearly apply to both the MFE
and MEM schemes]).

For a uniform grid,

(V(L) B V(LJ]
(L) L. (L) k+1 k-1
v = (s, - A )

k [N 2As

which is decoupled between odd and even k. Further, for forward Euler

(4.4)

time stepping this is a classic unconditionally unstable scheme (any instability

will be carried upstream with speed $,). We give the form of §

k MEM
and éMFE for this linearised decomposed case.
V(LJ ~ V(L]
z (L)) k+1 k-1
) (a8 + 884q)
SMEM ~ S e G4
z [ k+1 k"’l
\Casy * a5y )
z A[L)(viL]lz
L
Lty
L
(V(L]_V(L]J [V[L]_ [LJ] 2
T, Rk Dk k-1
L ASK+1] (Ask]
=) = s ; 2 (4.8)
iiRE LIy W )y
. ket kT YR Tk
[A5k+1] LASK]
+ (L), (L).2
YA v )
2 (V(L))z
XX
Clearly, for A(L] = ék + 0(As), then according to (4.4) both schemes

may remain stable in this linear case. However, the analysis of MEM in
section 3 is valid for general non-linear non-decomposed systems, so that

in general MEM should be more stable than any similar single grid method for

non-linear problems.
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In an attempt to circumvent any possible instability using a single
grid, an established fixed grid method may be applied to stabilise the
system. This is outlined below. Consider the differential equation

in the form

au
Du _ _3f , ., =
ﬁ' = 3% + S ™ [4.5)
and write it as
Du of
e (4.9)
where
f=1f-58u (4.10)
and the matrix
a?i A
—_— = —= =5 §,, (4.11)
au, au, i
uJ 3 J

We may now think of (4.8) as the fixed grid equation

3y
—

5T =0 (4.12)

Q)IQJ
x| [

which may be solved using for example a suitable finite difference TVD
scheme, but now the updated stabilised solution will be carried upstream
to xg i éiAt. Since one of the motivations of this work is to avoid
characteristic decompositions, this idea was tried using the Davis [12] TVD
scheme with appropriate modifications for moving grid effects.
Preliminary results shew no clear improvement over the fixed grid version,

but the investigation is proceeding and details of this work will be presented

in a later report.
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4.(B) RELATIONSHIP WITH CHARACTERISTIC WAVE SPEED

Consider the decomposed system

—_ 4 —— =0 i=1...n (4.13)

To apply the single grid MEM procedure to this system first rewrite (4.13)

as (c.f. (1.9))

DV A 3Vi 8V1 )
+ —_— = = [
pt i 3x 9 X
Now minimise
2
z Dvi ) avi avi 2
5 - iE[Ai . (4.14)

over S, which gives

aVv., 9V
2 A i 1
i 9x X
g = Z 5 57 (4.15)
1 1

Note that

(i) we have minimised the sum of sguares of the total derivatives
of the Riemann invariants.

(ii) we have ubtained the grid speed & as a linear sum of Lhe wavespeeds
with a weighting such that the speed will favour the eigenvalue
corresponding to Riemann invariant with the largest gradient, which is
a useful property to have when shocks may occur.

Now the general MEM has been applied to the non-decomposed system,
and we have already noted that it ensures that the sum of squares of the
total derivatives of the conservative variables is minimised. Let us turn now

to the grid speed § (3.21) and write this as
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where

For a linear characteristic decomposition we can write

u = Rv

where R is the matrix of the eigenvectors of A, and v the Riemann

invariants. From (4.18)

u =R v
=X —X

and, using (4.16), (4.19), we have

VIRTARV
—X —X

vT RT R v
—x

By the definition of R

R AR = A = diag (AiJ

so that we can diagonalise A and write

vT RT

RA v
—X

vT RT R v
—X —X

Now if we suppose that a particular characteristic i, say, has a Riemann

invariant with a large gradient then approximately

\
Yy o

)
O 0 £ v0O
St
-~
X

(4.18)

(4.17)

(4.18)

(4.18)

(4.20)

(4.21)

(4.22)

(4.23)
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so that by (4.22), (4.23)

8 A A (4.24)
— 1

We conclude from this argument that the grid speed of the MEM picks
out the characteristic which is 1likely to ghock and moves the nodes with a

corresponding approximate characteristic speed.
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5. SYSTEMS OF EQUATIONS WITH SEPARATE GRIDS

The MFE method may be applied to systems of equations with a separate
grid for each component of the system (see Wathen & Baines [101], Baines
i61, [71) and the MFE method retains its simple structure as in the scalar
case (c.f. (1.14)-(1.21)), but with a suffix L added to indicate the

Lth component of the system. We have

and inverting C(L) we find as in Baines [11] that
(L) (L} (L)
"1k by T PPy
- (5.2)
(L) (L) (L)
W2k P T 4bok

and as before (c.f. (1.18))

1 -t s hand I (a7
(5.3)
L ) (L) (L) (L) (L)
T8 en 08 5K Wiken” B8k
. (L), (L) (L)
l.€. M _y_ E ﬂ .
We can solve (5.3) to obtain
(L) (L) (L) (LY A (L) (L) (L) (L)
Y Y e S e SRS S BRI I M oY
Kk (L) (L) (L) (L)
AST/As - A" /As
k+1 k+1 Kk kK (5.4)
(L) (wy (L) (L)
Sy 2k 8%k g1/ Aok
k (L) (L) A (L) (Ll
Ak+1/ASK+1 Ak /Ask
(L) . (L) _ . . pps
As F may be a function of Vv (L =1,...,n), the main difficulty
with this approach is the guadrature in _E(LJ where
(L)
(L) (L) f
b = <b1K - % [V(1]---v(n])>
(L) (5.5)
(L) of [V[1J..'V(nJ]>
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Since

a[L](x,tJ = 2 aFL)u.[x,s(L) (5.6)
5]
J
we have values of V(P](sgt§,t3 for all

(t))

P,L, but on different grids.
Before considering the MEM for separate grids it is necessary to

consider the transformation derived in section 1 (1.12) and the conseguence

of its application to separate grids, both for MFE and MEM.

First
reconsider a system of equations written as

BX(L] ai[LJ
'5-%- + % =0 (L = 1, ,n] [5.7)
By applying the MFE method to approximate (5.7) with n separate grids,
using (1.12) n times, we see that n discrete mobile operators have
(L)
been employed. Using (1.12) with suffix (L) +to replace =t we have
(L)
(L . Da; o (L L) dv
vty Dy gy gt = (5.8)
at . Dt 3 j d J
J
But in each application of (5.8} we have, by (1.10),
w = Lxlb) oL (5.9)
J J J
so that the separate grids method relies on a non-unigue mapping of x
on to each grid moving with its own component of the system and, by (4.9),
(L)
, Dx
DX _ v j (L)
5t = Z 55 Y (5.10)
J
which is non-unique.
For separate grids MEM may be derived from MFE with a similar analysis
to the scalar case (c.f. section 2). Instead of solving (5.3) for y(LJ, multiply
1
by (D[LJ)2 and group the terms involving é(L] to the right hand side .of (4.3)
. . (L)
and minimise the overdetermined system with respect to aéL] with S as a
parameter, giving.
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(Ll (L) A(-LJ (Ll

S0 M2k e, B T e
k (L., W ), , (w
(Ask +ASK+1] (Ask +A8k+1]
Now using the identity
EX[L] ] DV[L] ) Eﬁ.ﬁ![L)
ot Dt Dt 9x
we rewrite (5.7) as
EX[L] o Ef(LJ , Dx .QX(L)
Dt X Dt 9x

and as in the scalar case (c.f. section 2) we may identify (5.11) as the
discrete analogue of (5.12), but with %%

The final part of the MEM procedure is to minimise 2|é£L)|2 with
L

. (L)

S

respect to to obtain
(L) (L)

S0 Wk~ * Wik

Kyew (W) ()

¥\ A

MEM (  t K+1]
8- =0

MEM

Finally we note that (5.13) represents the discrete analogue of solving

being a non-unigue grid speed.

(5.11)

(5.12)

(5.13)

(5.12) by using the non-unigue %% to cancel the forcing term in (3.12) and set

(L)

Dv B

ot =0

Dx _ EfFLJ/ EX-(L]
Dt 9x ax

for each component of the system.

(5.14)
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6. TRUNCATION ERRCR ANALYSIS FOR THE MFE METHOB AND FURTHER
OBSERVATIONS

We have already observed in section 2 that for the scalar
equation (1.2), the MFE approximation may be written as

(w ) [AK + A )

2k T WK+

&y - . . S (6.1)
(ASK + A5k+1] (Ask + Ask+1l

. i E?EE{ASK = w1k+1/ASk+1J 6.2)

MFE rﬂk+1/Ask+1 - &K/ASKJ

and for a uniform grid we have observed in section 2 that equation (2.4)
(and therefore (6.1)) represents a discrete analogue of (1.13]) to order

(As)?. That is, the spatial truncation error of (6.1) is

-
1l

L(u) - Lh(uJ =

Dé A+ A
Du , oF _ . du _ [Dak ok P Mg, B® k+1]}

e —_— = X — - - 8 = [8.3]
Dt X X Dt [ASK + Ask+1l MFE (ASK+ASK+1} i
a=u
and, using the discrete form of w from (1.30) and m,
Toe-(% - &) Y 4 gras)? (6.4)
' MFE~ 9x ' ’

Therefore it remains to examine the form of (6.2).

Let us substitute the exact solution into the discrete approximation
for éMFE’ assuming a uniform grid and using Simpsons rule for the
quadrature.

(f,_, + 6Ff, + Ff_ )] (6.5)

where

u u
h =as, € , =-FL—ifﬂ-—-f;} , Fo= flu) (6.8)
z 2 k
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Now
= = h E 21 a
U = Uk+% 2[Ux]k+% 5 Z(Uxx]k+; 0(h®)
, (6.7)
U osom s ), v B ), ., + 00h?)
K+1 kt: 2 "X k+} 2 2 Txx k+i
from which we obtain
u,_ +u
Kk k+1 _ _i N
5 = uk+% * =5 [Uxx]k+% + 0(h™) (6.8)
and
u, + u
k k+1| _ h? _
f ___5_____] = f{uk+% t g [uxx1k+% F[6k+%] , say {6.9)
Now expanding f(0) about U,y wWe have
2
i EL :
F(9K+%J = f[uk+%3 + 55 5 (uxx]k+% + 0(h™) (6.10)
Similarly
_ af h 4
Since
Flu, )+ Flu, ,) = 2f(u) + 2 (¢ )+ 0(hY)
k+3 k-3 K 4 XXk ’
(6.11)
y
- 2
F(uk+1l + F(uk_1] ZF(UKJ + h [Fxx]k + 0(h7)
Gl 3F he 3F he 3F h2 ¥
308 Modk+d T TE Medk-3 T30 TF Wdk t OR)
then the numerator of (6.5) can be written as
h? of h? _ . LS n
4[2'F(UKJ + —‘T[-FXX]K + 'E—)‘L—l—-q_— [UXX)KJ B'F(Uk) h (-FXX]K + 0(h")
B of
= (UXX]K S0k h? + D(hu] . (6.12)
Since
A e 2 Y
k1 K Uxxh + 0(h )
we have 9
- 2
SMFE ¥m + 0(h?) (6.13)
Now choose X = of
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and we conclude that the local MFE scheme applied to the 1-D scalar

wave equation may be identified as a subtle Lagrangian scheme or
chracteristic methed, with a spatial truncation error which is second-order
accurate on a uniform grid for a general flux function f. By equation

(6.1) we thus see that for MFE

= = 2 & S _a_-F. 2
EH 0(h2) SMFE 50 + 0(h?) (6.14)
while for MEM (c.f. (2.7))
of
= = s . H_ 2
a 0 SMEM EE_+ 0(h2) (6.15)
X

Further Observations

In [11] Baines has shown that in an element, MFE satisfies

a consistent entropy property, namely that

Dm 92t

= = 2
BT m* = (6.16)
where m 1s the gradient of Vv 1in an element. Also that the velocity
of the mid-point of the element segment of the solution satisfies
; . _ . of
& cos - § sine = - sing v (6.17)
Reconsider the differential equation (1.13) which we rewrite here
as
Du _ _8f _ . du
f]-'E Y + 5 3% (6.18)
we can write this as
-5&u =-Ff u (6.19)
X u X
and, with
tane =u_ =m,
X

we obtain (6.17). Further consider
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but with
au _ _ 3f
ot X
Then (B.20) gives
D fau _32-F+Sazu
Dt |ax gx2 %2

Now

:f _ 2°F (g2 4 2F 27U

%2 qu? X Ju 3x?

¥

so finally (B.20) gives

D (ay) . _ 22F (au)* , [4 - af) 2aZu
Dt |gx qu? |ax l ouj ax?
With
s .3f . _au
3u 9x

we may obtain (6.18) from (8.21), so that both of the local element

(6.20)

(6.21)

properties of MFE are direct conseguences of a Lagrangian characteristic

scheme, which is consistent with the above truncation error analysis.

Further all characteristic schemes clearly contain the entropy property

(6.161].

7. MEM DERIVED FROM THE GLOBAL MFE

Starting from the usual MFE viewpoint, we approximate the time

derivative by (c.f. (1.6))

- . _ 9V ..
v, § (aj ™ sj]uj

(&8.q. 5 .R.
Z Bjoy * 88y

(7.1)



_8/] .

with

v
By 5% %3

The glodbal MFE procedure is to minimise

2
of

||2[éjaj + 8.8 + 50l (7.2)

with respect to éj and éj.

MEM may be derived as a global method by first minimising
(7.2) with respect to éj only regarding & 'as a parameter. This
results in a system of equations for éj and éj involving inner
products of aj and Bj. Typically the j'th row is

<o.,0., >4, + <a.,B, ,>8, +
3773173 J BJ-1 -1

<a,,a.>8, + <o.,B.>8, +
o N N | J J J

) . ..
<uj’aj+1>aj+1 + <dj'8j+1>5j+1 = <dj, 8x> (7.3)

Now we follow the MEM procedure by grouping all terms involving
& on the right hand side of (7.3) to obtain a system of eguations in

the form

<o,,a, P4, + <a.,0.>8, + <a,,a, D&, =
377317 - 3733 3731 ]

1 j*1

9f . . .
—<uj, 3;> —[<aj,Bj_1>sj_ + <ﬁj,8j>sj + <dj,6j+1>s. ) (7.4)

1 J+1

which we denote by

Aa=g-178 (7.5)

where A, 7 are square tridiagonal matrices with entries

A, =<a,,0.>, A, . = <o,,0, >, A, ., =0 [k > j+1
A3 %37%3 , G509 k { y }

J;J_’l Js k ¢ J_1
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%j =<0j16j>‘ Zj;j_/l =<0thBj_,|>

. B = 0 P 3 ) = < j-1
23,301 TS0y By 2 fg = O {::>3.+1 (7.8)
Z . =<a B.> J
J+1, 3 Jj*1°7]
and
. af
g j <aj, 3x>
Now MEM proceeds to minimise
P
. 2 L2
A&l = lls- z&l (7.7
with respect to ék. This results in
ZTZ§=ZT5
and since 7 1is square
s=0'2ag=27" . (7.8)

Using (7.8) and (7.5) we see that for this case

IFal® <0 ana -0

This may be compared with the local element approach for the scalar
equation ! indeed for the scalar case this may be thought of as an implicit

characteristic method.

Systems

For systems MEM first minimises

: (L) .

pogalt) o, +s, pM L2 (7.9)
J J J 3 ax

with respect to é;L]. After taking all terme involving 5§ to the right

hand side this results in a system

F“J éﬂJ =g__(L]_ iLJE (7.10)

Then MEM proceeds to minimise
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2

(L) L (L)
ZLIIA &,

with respect to &, i.e. equivalently minimising

L) ),
Eilg_ -z 8l

over the é_ which results in

LWt W)
)z g =
L L

ZZ[L]T Z[LJé

For separate grids we have as in the scalar case,
é(L] _ 7(L)=1 EFL]

for each L, and by (7.10)

WK(L]:é(L] ”2 _—

As this global MEM approach is not being pursued further at

present we give no further discussion here.

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)
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8. 2-D GENERALISATION

The discrete form of the MEM in 2-D will be given in a later
report. As in 1-D the analogy with the differential case (i.e. analytic
mobile operator) is followed. Here the general procedure in 2-D is given
for the differential continuous case, together with further analysis and
observations.

Starting with the scalar equation

ut + fx + gy =0

this is written in the mobile operator form

Du . . =
e Fx xu o+ gy yuy =0

As in 1-D the scalar MEM proceeds along the lines of a characteristic

method with

X = fx/uX
= /u

Yy gy

ug=20

Systems with a Single Grid

We start with the mobile operator form

Du of og qu Ak

+—  — - — -y — =

Dt X 3y X ax 3y

As in the 1-D procedure we minimise

|

2

2

Du
Bt

with respect to % and ¢ , which is equivalent to minimising

of o8 au au |I*
_— et — - ——— —

X y —
X Y ox yay 2

with respect to % and y. This gives two eqguations for %X and y, i.e.

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.6)
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3f Sdu  23g U du sy a4 4
_' it 0'_‘=>.( -—"‘)‘/‘—'—'.‘—'_
9 X 9 X ay X 3 X X oY - Ra
(8.7)
of au 3g au a4 au pY Y
—_— e+ —, E X e— e — Yy —, —
IxX 3y oYy 3y axX 3y oY Y
Then, solving for %, Vy ,
3f  3g au 84 a4y AU QU pu
. =tk L] SR, =y, e o = .
X % [ax ay] %X | 9y ayJ 3y {ax ay]
BU ag] [ag ag] {aﬂ du )’
ax " axJ) Gyt av) LGxay
(8.8)
of sgy [du U Uy U U U
n —r—, -t —— . il el s e e
y = {ax ay] _EY[BX aX] D [ X aV]
oy 32] a4 321 a4 8E12
[BX‘BXJ[BS/ XD {BX.By)
Parallelism
If the denominator in (8.8) is zero then
d3U auUyHU U au  auy -’
= = = (8.9)
oX 33X |)lay 3V 3xX 3y
If also auU U
s — =0 {a)
53X §X
(8.10)
u 34
— ¢+ — =0 (b)
3y 3y
then X, y are chosen as the average of the X, ¥y velocity components
of the surrounding nodes. If (8.10) does not hold then (8.9) implies
oL Ll
— =) (8.11)
9 X 3y

where )

(8.6), we minimise

is an arbitrary constant.

In this case instead of minimising



._38_

BU

‘ag au

|ay 3y

+

e

of
3x

with respect to %X and y.

Further, suppose that for some I

ou
I J _
-—5—;7!0 W—U J#AT
au au
L0 _J . g J#I
ay oy

Then the procedure given in (8.12) will reduce to the scalar case
(8.3). If either (B8.10a) or (8.10b) holds we choose the corresponding

component speed to be an average of the neighbours as before.

Orthogonality
Returning to (8.4) and taking the dot product of (8.4) with
au au
—, 351 respectively and using (8.7) gives

X
Du ou
Bt * 3% °
qi au
ot * 3y -~ °

From (8.13) wesee that it is possible to solve for two components of the
DE(LJ
of the unknown ot time derivatives in terms of a linear combination

of the other time derivatives. In particular, if we have a two-component
system to solve, then by (8.13)

o (1) (2] 4 = (1)<

du 3u Bu
3 x X Dt
(1) (2) (2) e
ou au Du
3y 3y Dt

and, for

D =VUHJ XVu(zl# 0

(8.12)

(8.13)

(8.14)

(8.15)
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we have
E.E[“ .
Dt ’
(2) (8.18)
Du™" . g
Dt
We note that for this case the equations of minimisation (8.7) may be
written as
o SH 1 1 2.
8_L_l[“8_u(] £[1J+L(] ) iE{(JB_U[] 3—U['IJQE[’II! g
X X ax oy ax o X ax ay
3u[1J (2) 3F[2] ag[Z] EE[ﬂ QE(ZJ gﬂ[2)@2(21 g
o - = 2SS + =2 I
XY, 3y X" 5y ay ay X ay
(8.17)
and, if (8.15) holds, (8.17) may be inverted to give
= —(2) (1) y
E pu (a2 a0 (ar (%) 0
_ '
£ (1) (2) . f2) . (2) (1), (%)
; TR X A T: o R TR FANRET
|9 a%x 3y | X 9% 3y | |
For the inviscid Burgers equations in 2-0,
i.e,
au ., ,du
ut +u o + oV 5y 0
(8.19)
Vi u B_V + .a..\.{. = 0
t R Y
then
af (The (™ U U4 o
3X dY dX 3y —l
= (8.20)
at (g %) avoav ||,
R 9X Y
and therefore, by (8.17), (8.20),
o I (8.21)

:

|

o
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In this case the grid nodes will move along the stream lines. Now

Du
consider the dot product of (8.4) with ﬁ% , 1.e.
Du Du of Du 3g Du
STt S Tar teR 3y ' Bt (8.22)
where we have used (8.13). This gives
. -
|D_£ = E+E. E+a_§_ - )'(a_E-+'8_E. (8.23)
‘Dt | X  dy 3 dy ax Y 3y
3u
Let E = '5;
ou
b = — (8.24)
of g
e, = oo * 3y
Then
| Bu | ®
|EE‘| =cesC-XCesa+yceb (8.25)
and using (8.8) and (8.24)
(c-a)(b-b) - (e+blla-h)
7 Tara)(beb) - (avh)®
(8.26)
(c-b)(a-al) -(cra ab)
MO I GO RN EUE
(8.25), (8.26) then give
Du |1* (ccab - e+b a)®
E‘-E = E - E il [E.E EQE = (E'Elzj [8-27]

by the Cauchy-Schwartz inequality

(a*b)? = (a*al)(b+b)
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then

2 2 2

QE‘
Dt

of 28
—_— —

g% ay

ou

at

and again we conclude as in 1-D that this implies stability of the mobile

operator in the steady state.

Systems with Separate Grids

As in the 1-D case we may introduce non-unigque X, y such that
for the Lth component of the system
EE(L) EfFL) ) k[L] gﬂ[L) . ég-(L] W) gX-[L] e
Dt 9% B X Dy Yy
and take
(L) _.Qi(L]/ EE_(L]
9X o X
(L) EfFL]/ EEFLJ
Y 3y 3y
EE[L] -
Dt

For the Euler equations in 2-D, we can either take four separate grids,
one for each component, or use the method of the single grid minimisation,
but applied on two grids where each grid will eliminate two variables.

A natural pairing for the Euler equations is to solve for the two momentum
components on one grid, and the density and energy on the second grid,

the density and energy being the variables which can develop contact

discontinuities as well as shocks. This results in

of dg N -
D{pu) __Imxlﬁ__[mx] _ |8lpu) 3(pu) >.([’1]
e - O ER ay ax 3y
Dlev) _ if[m_y)ﬁ_g[my) _atew)  3lpv) (1)
Dt ’ X dy | o 3y y

(8.28)

(8.29)

{8.30)



and we note that

and

Dp
Dt

DE
Dt

(8.30/31) correspond to minimising

DI(

[

Dp

2
2N
Dt

)

DE
Ot

Dt

D[pv)]2

. (2)
X

(2)

. (2)
y

. (1)

. (2)
y

(8.31)

(8.32)
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2] MEM 2

In this section we give a brief account of a second derivation of
MEM which results in a gradient weighted scheme, (but quite different from
the gradient weighting of Miller [61). Preliminary results indicate
that this version is in fact superior to the first version in two
dimensions, at least for a scalar problem. Full details of this scheme
will be given in a subseguent report, but an outline is included here.

To illustrate the alternative version, MEM 2, we consider again the

solution of the eguation
— +— =0 (8.1)

First we replace the u, term with the identity (1.8) and rearrange

(9.1) so that we have

Du _ of Dx Qu

Ot ~ " 3x Dt ax e
Now take the sguare of both sides of (8.2) and integrate over
-0 £ x £ o : then
Du {{* _ ||_ 38f , Dx 3u||?
BE || C H 5% * Dt ox e
Now we can see that if we minimise
_of Dx 9du (|2
” ox © DE ax (9.4)
, Dx R
over all possible 0T then we actually minimise
Du {|?
ot (9.5)

D
over 5%' If we carry out this minimisation in the differential case we

obtain



2
_3_'F.§£+%. .&. dx = 0 (9-8]
1 ax ax Dt jax|

which is clearly satisfied if

5t 35/1&1 (9.7)
9 X

and (9.7) is the usual expression for the characteristic speed.
Now if we make the usual M.F.E. approximations in (9.4) (see §1),

we see that by minimising

"- 5 oY 5,0, 22 (9.8)
J

over éj an approximate characteristic property is explicitly built

into the MFE framework, with éj given by

] 3
<8.] 885> * <Bys 5> 0 (9.9)

We obtain the &'s in the usual way by minimising

b g . of || 2
d.0, * B, o+ = (3.10)
l\Z 5t 1885t o
J
over éj. The resulting matrix system is
Ay = g (9.11)

where A 1is block tridiagonal with a typical row

< 3 3 ) L3 'l ] -y . =) .
r- uJ uJ_1> <aJ BJ_1> <aJ uj> <0LJ Bj> <0LJ uJ+1> <uJ BJ+1>

D < ] . > O .y D 3 .
BJ BJ"1J <BJ Bf> <BJ BJ+f>J
corresponding to the minimisation of (8.10]) over éj and (9.8) over éj

respectively at node j. (Note that unlike the MFE matrix, A is not

symmetric). Also
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a, <osr = 2D
. X
y = J g = J 3
g _af
e 5 <Byr T 9x >

in the usual MFE notation.
The above equation (9.11) illustrates MEM 2 in the global form
written in terms of .i so that it may easily be compared with MFE.
There is no need to solve for i ¢ since the second equation only involves
$ from (9.9), this may be solved first, then the first equation of (8.11) can be
used to solve for &. Both of these solutions then only involve the
inversion of symmetric tridiagonal matrices.
As with the MEM of 82 the main advantage of this approach (besides
being more explicit) 1s the corresponding treatment of systems, where we

minimise

oy L)

2
= S8
L3 H ZJ D g (9.12)

which results in a similar form for x as in §3 (with all the same
properties in 1-D and 2-D c.f. §3,4,8) but within an integral, i.e.

minimising (9.12) over X gives

(L) (L) (L) (L)
. ou au _of ou -
L
To obtain the discrete form for &, minimise
A (P) 2
) ”" o } s BFP) H (9.14)
= X . J J
over éj which results in
. (P)
) <P, 75 Phey w8 s (8.15)

I R R 1 RN ax

(P)

For each & we minimise
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g (P) 2
E z é(_ + z 5 B(P] af (9.186)
P J J*3 aXx
. (P)
over a, .
i
In two dimensions te solve
ut + -Fx + gy E] U (9-17)
we use the two dimensional equivalent of (1.9) and write (8.17) in the
faorm
Du _ _ . i
T (Fx + gy] *Xu oty uy (9.18)
c.f. (8.2}, and as in the 1-D case minimise
D : D ’ 2
I8 (B R T - [r- o+ yu 1d
Tt - J [Dt] dxdy I[ Efx + gy] *oXu ¥ yuy] dxdy
(9.19)
but now over x and Vy . To obtain the discrete form for %X and vy
we use the MFE approximations for x, y and v, i.e.
X = ) X.o0,
) %3
P = .0 (9.20)
Y z yJaJ
v =) a.o.
L 2
and approximate (S9.18) by
2
-(f +g ) o+ x Vo (9.21)
] g, ) + 1 Xjogv, + L Yo |
which is minimised over kj 9j to give
<8 E %, 8> *+ <B.s E N> = - <Byuf, e
(9.22)
<Yj’ E xKBK> + <y, E kak> = - <wj,fx + gy>
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where Bk = —vxak, Yk = —vyuk and
A AN
k k
YV 7o L 9oV
K k'k K k'k'y

Similarly for systems, the discrete form for ij, 9j is obtained by
minimising

(p) (p) \ (p) )
D ller « g+ L e P o] I
p

over *j and yj respectively, to give

\ (p) v . ,(p) ' Pl v P)s - _ ¥ (p) .(p) (p)
2<raj 2L X By >+Z<fsj A e Z<6j MR- VS

p K =

\ (p) v . ,(p) (p) (Pl - _ v (P) (p) (p)
g <Yj z KBK > o+ z <y 2 yKYk > §<~jv s fx + gy >

The discrete form for & is obtained in the usual way, by minimising
b ) ) I
a.a, + ) x.B, + V.Y, * f_ +
JJ JJ yJYJ X gy

over éj in the scalar case and minimise

(p) (p) , [pJ (p) (p) 2
||2 DRI S A NN

over each é;p) for the system.

(9.23)

(9.24)

(9.25)

(8.26)

(9.,27)
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Local MEMZ

We here derive the discrete form for & for the scalar 1-D case.
The form for 2-D, for systems and for separate grids, although similarly
derived, will be described in the subsequent report. We start with the
global norm (9.8), which may be rewritten as

A v _ of
U§ Sjaj X X

2 2

L Lo Zigby t ek

j i=1
where
koLl Pk
/Ask k-1 /ﬂsk
ok s Bk
VASK Kk VASK

and ¢ij are the local basis functions, c.f. §1. Adopting the usual
local MFE procedure, c.f. §1, with the new variable 2z in place of w,

we minimise (9.28) gver 2, (1=1,2) to give

Cz

n
o

where

A

and &C and b are defined as in §1. From (g,2g9) we see that we need

to solve an overdetermined system for ék' namely,

(9.28)

(9.29)

(9.30)-

(9.31)
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where D is defined as in 2 (and is required to ensure conservation)

A z z
M= LR L R (9.32)
B+t 29 k+
We obtain the discrete form for ék by minimising the residual of
over ék to give
-1 T -1 -1 T -1
Mo HhToin & - -no (5.33)
which gives
=) - .
A AR+ . MZok  Bre1®1 ke
s, = hs S« T 7 [Tas, "7 ns (9.34)
k e+ K k+1

Comparing (g9.34) for SMEM2 with (2.7) for 5vyey We see that MEMZ2
contains a gradient weighting.

To obtain the discrete form ék in terms of ék (now given by (g, 34)
we follow the procedure described sarlier for MEM 7, equations (2.1) to

(2.4).

Summary

In contrast to the first MEM (where we minimise (8.410) with respect to &,

2
then choose & +to minimise |[|&]] ), for MEM 2 we first minimise

Du

2 : 2
ot over & which corresponds approximately to minimising Ilz 4.0, ||

JJ

(c.f. 1.8) Then having obtained &, go back to the usual norm of the
residual of the differential equation and minimise over & to give

the discrete form for & in terms of the known 8.
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10. RESULTS
All the results presented here are for the shock tube test
problem of Sod (13), solving the Euler equations written in the

form (1.1) where

u = P +  E= |pu
pU pLI2 + P
E ule + PJ)

The conservative variables p, pu, E are the density, momentum

and energy respectively. The pressure and velocity are denoted by

P and u respectively. In the figures the solid line is always
the exact solution.

(i) Local MFE. Single Grid (§3)

Fig. (B) is the MFE solution run from initial data at time
0.1 (Fig. (5)), to time 0.144 with time step At = 0.001.
Note that the nodes are in danger of collision in the
expansion.

Fig. (7) is the MFE result run from time 0.1 to time 0.25

with time step 0.001. The nodes have collided and the method

attempts to fit a shock.

Fig. (B8) is the MFE result again run from time 0.1 to 0.25,

now with a time step of 0.001; although a solution is obtained

the nodal distribution along the expansion is poor.

(ii) Local MEM. Single Grid (§3)

Figs. (9) and (10) are the MEM solutions, run from an initial

time 0.1 and output at 0.144 and 0.25 respectively, both

in one time step. The nodes remain well distributed throughout

the expansion.
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Fig. (11) is the MEM result run from time 0.0072 to 0.144,
in one step. If smaller steps are used for this case (i.e.
with initial time 0.0072) the method develops expansion shocks.

However MFE could not produce a sclution at all for this case.

(iii) Separate Grids (§5)

Fig. (12), (13) and (14) are the MEM results using a different
grid for each component of the Euler system. Figs. (12) and
(13) were run from initial time 0.1 to 0.144, 0.25, respectively.

Fig. (14) was run from 0.0072 to 0.144.

(iv) Local MEM 2. Single Grid.

Fig. (15) is the result of the second version of the local MEM

(c.f. §9) run from 0.1 to 0.25 in one step.

(v) Local MEM 2. Separate Grids.

Fig. (16} is the MEM 2 result for separate grids run from

0.1 to 0.25 in one step.
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CONCLUSION

In this report we have given details of a new method (the
Mobile Element Method (MEM)) for systems of conservation laws in any
number of dimensions, based on the use of finite elements on a moving
grid. The grid motion is regarded as a parameter in the finite element
projection and is determined by minimising the mobile derivative of the
object function. The basis of comparison is with the method of local
Moving Finite Elements, and a number of new results concerning both
this method and MEM have been obtained.

Although further testing is required and other formulations are
being considered, results are sufficiently good to indicate that the
MEM has a solid basis and promises well for further development.

In particular further research is needed to investigate the problems
with expansion shocks: one reason may be that the scheme is not
entropy satisfying for systems.

After this work was done my attention was drawn to related
ideas in the papers of Dukowicz [15] and Hyman [14]. However, the MEM
is distinct from their work in several ways and was derived without

the knowledge of these developments.
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APPENDIX 1

Possible treatment for parabolic equations and forcing terms

If MEM is applied to an eguation of form

Uy * a[u)ux =eu. (A1)

then, using (1.9), (A1) may be written as

B e u - alu) u + s u (A2)
Dt XX X X

or
o e u = - glulu_ + s u (A3)
Dt XX X X

Equations (A2) and (A3) suggest two approaches for the application

of the MEM. In the first approach, from (A2), minimise

2= fleu, -atuu +5u |l (A4)
over & . In the differential case version simply set
&= -¢ Yxx + alu)
Uy
(A5)
Du _
ot = C
The characteristic is effectively modified to account for the viscous
term.
In the second approach, from (A3), we minimise
Du _ L e
oE = £ Lo = || aluu, + u, & || (AB)
over §. In the differential case set
& = alu) (A7)



The solution is found along the characteristic (with € = 0),
and although the cell Reynolds number restriction is removed, the
limitation on the time step due to the diffusion remains Johnson [17]

To obtain the numerical discretisation for —3—% (i.e. &) in

both approaches, the accompanying minimisation is

Du .
— - 58u +alulu -eu
X X

Dt XX

over & in the usual way. This latter method does not involve
integration of products of B with U (see reference above).
For a general forcing term, P, say, we replace EUXX with P

in the above.



APPENDIX 2

Parallelism

MEM can suffer from the equivalent of parallelism in MFE (reference (103}],
when the coefficient of & vanishes. For example, consider the scalar

1-D case (c.f. §2). From (2.7) if the § coefficient is zeroc then

AK + AK+1 =0
which is equivalent to
ou _
w0

For this case we minimise (2.1) only over &, obtaining still a
conservative equation for &. As in the treatment for parallelism
in MFE, c.f. Baines (7),the éj with vanishing coefficients are chosen

to be means of their non-vanishing neighbours.
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