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Abstract

A moving mesh method is described for the solution of non-linear
parabolic partial differential equations, based on a conservative dis-
tribution principle. Using this principle the underlying partial dif-
ferential equation may be recast as a moving mesh equation. The
mesh equation is then integrated forward in time, the solution being
reconstructed from the distribution principle itself. The method is
described with explicit reference to the porous media equation. The
distribution principle uses a monitor function which is initially taken
as the dependent variable, in line with scale-invariance properties of
the porous media equation with zero flux boundary conditions. Al-
though the resulting meshes exhibit the inherent self-similar properties
of the exact solution they fail to resolve the solution at the moving
boundary. The procedure is therefore modified, first by incorporating
mesh subdivision and then by using a gradient monitor function. In
the latter case the distribution principle is no longer conservative and
is therefore generalised to include time varying distributions. The pro-
cedure is applied to two other problems, one related to semi-conductor
process modelling (with fixed boundaries) and the other with a non-
linear source term, inducing solution blow-up.



1 Introduction

The use of adapted meshes in the numerical solution of partial differential
equations (PDEs) is a valuable technique for improving existing approxima-
tion schemes. For problems in which large solution variations are common,
an adapted mesh can improve the accuracy and the efficiency of existing
methods by concentrating mesh points within regions of interest.

There are three main classes of mesh adaptation. The first, h-refinement,
adds extra nodes to an existing mesh to improve local mesh resolution. A sec-
ond technique, p-refinement, employs higher order numerical approximations
to improve local accuracy as well as approximate troublesome derivatives.
The third approach is r-refinement, which maintains the existing number of
nodes globally but relocates them strategically over the domain. It is this
latter approach that we shall use in the course of this report, although, as we
shall see, r and h-refinement may be combined within this general framework.

In dynamic mesh relocation methods a mesh movement principle is needed
to determine the speeds of nodes. This is designed in such a way that mesh-
points remain concentrated in regions of interest as the solution evolves with
time. Thus two coupled equations need to be considered, the underlying PDE
and an equation to control the evolution of the mesh ([12],(25], [5], [15]). In
the present work the mesh is evolved using a Conservative Distribution Prin-
ciple (CDP) which moves the meshpoints so as to preserve the local integral
of a monitor function in time.

In this report we describe a moving mesh method for one-dimensional
parabolic PDEs of the form

U = (D(U)Um)x + Q(u)’

with particular reference to problems involving non-linear diffusion, with and
without moving boundaries, and solution blow-up.

The approach relies on the construction of a CDP and on recasting the
PDE to yield an equation for mesh movement. As a result only a single
system of ODEs for the mesh points need be integrated forward in time, the
resulting solution being reconstructed algebraically from the CDP.

We begin in Section 2 by summarising the work of Budd et al ([6],[9],[10])
which argues that moving mesh methods should be designed to preserve the
scale-invariance properties of the PDE in question locally, thus indicating a
choice of monitor function. In this section we also recall the idea of equidis-
tribution, a standard technique which underpins many existing moving mesh
ideas, and review the approach of Moving Mesh Partial Differential Equations
(MMPDES) of Huang, Ren and Russell ([24],[15], [16],[17]).



In Section 3 we outline the moving mesh method used in this report in the
specific case of the porous media equation (PME) with a moving boundary,
and demonstrate how the PDE and the CDP are coupled together to produce
a system of ODEs for the mesh coordinates. In line with the work of Budd et
al, the monitor function in the CDP is chosen to be the dependent variable
of the problem. These ideas are followed up in Section 4 where it is shown
how mesh refinement may be included within this framework. Without mesh
refinement the dependent variable monitor function gives poor resolution
at the moving front and we therefore generalise the method using a more
geometrical monitor function and a time-varying distribution.

Section 5 contains numerical results from the moving mesh procedure
compared to an exact self-similar solution of the PME and we verify the
scaling invariance of the method when using the dependent variable as the
monitor function.

The procedure is then extended in Section 6 to two further problems ex-
hibiting additional features. First we consider a model semiconductor dopant
diffusion problem in which the moving boundary is replaced by a fixed bound-
ary with a Neumann boundary condition. The mesh adaptation is required to
resolve features in regions of low dopant concentration. Secondly, we apply
the method to an inhomogeneous problem involving solution blow-up, us-
ing the technique to reproduce accurate times of solution combustion. The
report ends with some concluding remarks.

2 Background

2.1 Scale Invariance and the Porous Media Equation

In (7],[9] and [10] Budd et al advocate that any moving mesh method should
reflect the scale-invariance properties of the underlying PDE. In this section
we describe the relevant properties of the PME, beginning by formally intro-
ducing the equation and highlighting some of its properties. In one dimension
the PME is the non-linear diffusion equation

ur = (U™ Ug)y (1)

where m > 0. The PME arises for example in the study of the diffusion of gas
through a porous medium under the action of Darcy’s law relating velocity
to pressure gradients, or in the modelling of the swarming of insect species
(see Murray [20]). There is a fairly complete existence theory for solutions of
the equation which takes the form of travelling waves in a region of growing
compact support [s_(t), s+ (t)], with u = 0 for z > s, (t)and z < s_(t). Given



that such a compact solution u exists, the solution conserves two important
quantities, mass (the integral of u) and centre of mass (the first moment of

u). We have
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so that the total mass is conserved. Also, if T is the scaled centre of mass
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The conservation of both the total mass and centre of mass allows the
speed of the moving boundary to be derived. Moreover, given symmetric
initial conditions, the solution will remain symmetric throughout time. Fig-
ure 1 illustrates the behaviour of the solution, the dashed line representing
the progress of the self-similar solution, for the case m = 2. The value of m
influences both the speed and character of the solution close to the moving
boundary. The larger the value of m, the steeper the evolving front and the
slower the rate of displacement of the moving boundary.
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Figure 1: Evolution of solution to the PME (1), for m = 2.



We now outline the scaling invariance property which is the basis of the
moving mesh ideas of Budd et al. ([7]). Given a system (u, z,t) satisfying a
PDE and a mapping to a new system (4, £,t) under the transformation

G=Xu, Z=MNz, {t=2x (3)

where A is an arbitrary parameter, the original (u,x,t) system is said to
be scaling invariant if the PDE under consideration is identical in both the
original and transformed co-ordinates. Moreover, if a solution to the equation
is invariant under the mappings then the solution is said to be self-similar.
The resulting equation, written in terms of the transformed variables, is often
easier to solve than the original PDE and may be solved to give a class of exact
solutions. The resulting self-similar solutions are invariant in the transformed
space and hence independent of time. Choosing # arbitrarily to be 1, we can
write the transformed solution in terms of the original coordinates as

4 =utwr, &= st (4)

Substituting into the PME the resulting steady differential equation for
% and £ can be solved by techniques found in Barenblatt [2] or Dresner [13].
As a result a self-similar solution with a moving boundary can be derived
(with zero flux conditions) which can be found in e.g. Murray {20], of the
form
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with roA(t) representing the position of the moving front and I' denoting the
gamma function.

The existence of the self-similar solution allows us to validate numerical
approximations of the PME. One aim is that the approximate solutions will,
under the appropriate transformation, display the invariance properties of
the exact solution, as is the case with the moving mesh solutions of Budd
and Piggott [10].



2.2 Equidistribution and MMPDESs

Equidistribution, first introduced by De Boor [11] for use in approximation
theory is now a widely used tool to produce efficient computational meshes
for the numerical solution of differential equations ([26],[1],[15]). The basic
idea is to construct the mesh such that a geometric property or error measure
of the solution u, specified via a monitor function M, is distributed equally
in each computational cell. Written formally, on a mesh consisting of N + 1
nodes, g, Z1, . - ., T, the equidistribution principle (EP) is

Tit1

de:l/z”de (i=0,...,N—1), (6)
N Jeo

Ty
It is easy to see that by choosing a monitor involving a first or second
derivative of u, nodes can be clustered in areas of large solution variation or
curvature, so as to provide more accurate numerical approximations in these
regions.
Alternatively the EP may be formulated as a coordinate mapping problem
between the physical space x and a computational space &; divided up to give
equally spaced discrete points £ = # fori=0,1,...,N. Then

/0 " vz = ¢ /0 " Mz (7)

The EP (6,7) may be differentiated with respect to space and time in
various ways to derive Moving Mesh Partial Differential Equations (MM-
PDEs) [15]. The EP (7) is differentiated twice with respect to £ and then
time differentiated in order to eliminate the potentially troublesome right
hand side integral term and any of its derivatives, leading to MMPDEs (1-4)
in [15]. The resulting equations move the mesh such that the distributive
properties of the EP are preserved. Such equations for mesh movement are
widely used, for example by Mackenzie et al [18],(19],[3]. The integral form
(7) is used directly by Flaherty [14].

The choice of monitor function can be crucial to the solution of a specific
problem. For instance, Qiu & Sloan [23] developed a specialist monitor for
the solution of a reaction diffusion problem where more traditional monitors
failed. In [9] Budd et al implement an MMPDE involving a simple monitor
(M = 1) which preserves the scale-invariance of the PME, for which the
resultant mesh has a uniform expanding character. For the case m = 1, using
finite difference approximations to the pseudo-Lagrangian form of the PME
and for the speed of the moving boundary, the method is applied in both the
original and scaled variables. It is found that the scaling resulting from the
approximate self-similar solution is identical to that in the continuous case,



so that the discrete self-similar solution has the dynamics of the underlying
solution in the original variables. The scheme used has conservation of mass
(and the centre of mass) built in as required and it is shown that the resulting
discrete self-similar solution converges to the true self-similar solution as the
number of nodes in the mesh is increased.

The density monitor M = u has been used for the PME by Budd &
Piggott [10], whose results show that for the PME with m = 1 (for which
the gradient at the moving front is finite) the mass monitor preserves all the
desired properties and is able to model the solution adequately. However,
as we shall see, for higher values of m (for which the front at the moving
boundary is infinitely steep) a different monitor is needed to resolve the
front. Similar ideas have also been applied to the non-linear Schrodinger
equation [8] and to problems with blow-up [7].

3 The Moving Mesh Method

In this section we describe the Conservative Distribution Principle (CDP)
used in this report. Arising from the observations on scale-invariance and
equidistribution above we derive, with specific reference to the PME, systems
of ODEs which give the movement of mesh points under the influence of the
dependent variable (or density) monitor

Mu)=u (8)

However, as we shall see, this monitor leads to poor resolution at the mov-
ing front. This motivates the subsequent incorporation of mesh subdivision
into the method.

3.1 A Conservative Distribution Principle (CDP)

We begin with the equidistribution principle incorporating the monitor (8).
Using the notation in (6) we have

zi41(f) 1 ran(®
udr = — udx = 6(t 1=0,...,N—1. 9

/xi(n N Jao(t) R ®)
defining the integral term 6(t). Time differentiation of (9) gives

d [ritat)
+ p dé

il = & —f)
dt Ja;(t) uas dt



With this monitor the mass 6(¢) in (9) in each cell can be taken to be
independent of time, since this is consistent with the PME problem being
mass conserving. We then have

d [zi+1(t)
dt Jazi(t)
which will be referred to as the Conservative Distribution Principle (CDP).

udz =0 (10)

3.2 A Mesh Movement PDE
Integrating the PME from =;(t) to z;41(¢) gives

Ziy1(t) Ti (t)
/ +1 e i = +1 u uw d:]j = [u uz]z1+1(t) (11)
T t) (t)

Moreover, expanding (10) gives

T; (t)
/ - uds — [ux]m“”(t) =0

i(t)

Substituting into (11) gives the Moving Mesh equations
i1(8 :
[wi +umu i =0 @=1,...,N-1) (12)

which we refer to as the FDE or the flux form of the PDE.

The zero right hand side in (12) is the result of the specific choice of
monitor M(u) = u, for which the mass 6 in (9) is independent of time.
Moreover, due to the symmetry of the porous medium solution, we have that
To = (Ug)z, = 0 at 2o = 0, so equation (12) leads to the system of ordinary
differential equations (ODEs) for the mesh co-ordinates.

Ib() =0
B o= — (U™ ) gma, (i=1,...,N—1) (13)

Since (13) holds for any z; arbitrarily close to zy we also have

Ty = — xl_lglN u™ g, (14)

Note that for m > 1, the slope u, at £ = £y must be infinite if the speed of
the moving front is to be finite.

The system of ordinary differential equations (13,14) will move the mesh
in such a way that, as the material diffuses, cells retain the original mass
within them.



subsectionDiscretising the CDP
Using a trapezium rule approximation for the distributed mass  we have
the approximation

%(UHI + ) (Tip1 — @) = 0 (i=1,...,N-1) (15)
where 6 is the mass under the linear interpolant. The discrepancy between
the exact equidistributed mass 6 used in (9) and the discrete mass 0 used in
(15) is of order (ziy1 — 2:)°.

Since uy = 0 at the foot of the moving boundary we can solve these
equations to give

uny = O, (16)
N o (—1)k-i-l

u = 2y f— (i=N-1,...,0) (17)
k=i+1 T — Tk-1

yielding the interpolant values u; in terms of the current mesh co-ordinates
z; and the discrete constant mass 6.

Initially we use a mesh that has equidistributed discrete mass (15) in all
cells. This is achieved by using a linearised form of the monitor function,

1
My = 5 (ui+ i),

when generating the initial mesh, so as to be consistent with the trapezium
rule approximation used in (15). Details of how to solve this initial meshing
problem can be found in for example [1].

To discretise the system (13),(14) we use an upwinding approximation
which respects the flow of information, i.e.

wﬂ]m‘lwﬁ (i=1,.,N)  (18)

i = —uTUgls & — [ 2 (z; — zi1)
1 11—

The approximated ODE system moves the mesh in such a way that the
discrete approximations to the mass will be approximately equidistributed
and conserved.

3.3 Numerical Procedure

The full algorithm is as follows:



e Discretise the initial data giving the value of § and the x;, u; values.

Solve the CDP (10) via (17) for the u;’s in terms of the z;’s.

Substitute for the u;’s into the discretised form (18) of the FDE (12)
to obtain the mesh speeds z;.

Solve the ODE system in the z;’s by a package, in these examples using
the NAG BDF routine [21].

Numerical results are given in section 5.

4 Resolution at the Moving Boundary

Despite its attractive theoretical properties the mass monitor does not natu-
rally place nodes in regions of high solution variation, which is clearly highly
desirable for the solution of the PME at the moving boundary for values of
m > 1. However, looking at the method from a different perspective gives
us two other ways of placing moving nodes in this region.

4.1 Mass Conservation and Grid Refinement

Equation (10) does not have to correspond to an equidistribution principle.
In fact we may choose any initial distribution of mass, e.g.

zip1(t) ,
/ udz = 0,1 (i=0,...,N—1)
a:,-(t) 2

where the masses 0, 1 may be any strategically chosen masses which sum
to the correct total mass. The system of ODEs remains exactly the same,
the only difference in the algorithm being a slight change in the formula (17)
for the recovery of the u solution from the current mesh. We now have the
equations

Uy = 0
N (_l)k—i—l

k=i+1

. =1,...,N —1).
Z+%wk—'mk——1 (7’ ) ) )

where éi +1 are again the masses under the linear interpolant.
To improve mesh resolution near the moving boundary we simply choose
to place smaller and smaller quantities of mass in the cells near the boundary.

10



This gives an easy way of maintaining high mesh resolution in the desired

area. The nodes are now moved by pure conservation of mass rather than by

preserving equidistribution of mass. Again, results are shown in Section 5.
The next section examines the use of an alternative choice of monitor.

4.2 Using the Gradient Monitor

We now describe the use of a gradient monitor function within the existing
algorithm. The motivation behind the change of monitor is to resolve high
gradients without the need for mesh refinement. The gradient monitor is

M(u) = ug (19)

and requires that the solution remains monotonic, which is the case here.

When the monitor function M = u was used, the value of 6 in (6) was set
to a constant, consistent with the mass conservation property of the PME
problem. Other choices of monitor however are not consistent with mass
conservation in general. Nevertheless we are still able to derive the method
in much the same way as before by retaining a non-zero time derivative of
f in (12) and including an additional differential equation for 6 in the ODE
system expressing the conservation of the distribution of mesh pints arising
from the monitor (19) We thus restate (6) in the form

Uz dr = —

/m‘i+1(t) 1 ran(®
z:(t) N Jao(t)

uzdzr = 0(t) (¢=0,...,N—1) (20)

so that, differentiating with respect to time gives, over each cell, we obtain
the more general form of the CDP (10) as

ziy1(t) df
z; (t)
Lo vt s = @
Substituting for ug from the PME (1), differentiated w.r.t z, gives
mip(t) © dé
2)azd TH® = 22— 22
Lo rus)ande + 5 = (22)
providing the generalised FDE
(™ ug)s + :r:uz]xhLl =0 (i=0,...,N—1) (23)

of (12).
The right hand side term 6 but can be dealt with by using the geometric
equidistribution properties of the gradient monitor for which, from (20),

11



w(Zir1) — u(z;) = 0(1) (¢=0,...,N—1) (24)

Thus nodes will be placed such that the u(z;)’s are equally distributed
over the solution range of u. By summing all the equations from (24) we
have

1
6(t) = w7 (u(zo) — u(zn))

which, after differentiation with respect to time, substitution into the PME
and using uy = 0, gives

S | 1, .

0= 'N‘utlaD:mo . N(u Uz )o|o=a0- (25)

As in (15) we use (24) with approximate masses 0 as if u were its linear

interpolant, corresponding to

Uip1 — u; = O(2) (26)
and
- . UN — UN-1
0~ ~ -2y 1 te) | —mm— . 27
o (UN_E ‘) [(:I:N - wN—1)2] 27)

Returning to equation (23), we then have

m ] Ty 1
[(u™ug)e + xum]xial)(t) = N(umum)z|z:mo

giving the ODE system

j?o =0
N —1
N

mz(um)lw; = _(umuw)m|m¢ + (umuw)m|m=zo (i=1,...,N— 1) (28)

The expression for the speed of the moving boundary (14) is still valid.
The system of ODE’s (28,26) may then be numerically solved using the
upwind discretisations

| Uiy — wy U; — Ui
oley = = | (LMY (W) 29
Uala 2 [($i+1 = xi) i (wz - mi—l)] (29)

2 Uijr1 — Uy Ui — Uj—1
" = |,m i+ Y _qgm L B i 30
( u:c)avlw. (mi—H — xi—l) luz+% (xi+1 — m) ul—% (:1;Z = e g ( )



where

Uiy = 5 (Ui + Uiga)

Having prescribed the speed of the nodes, we relate the mass conservation
property to the current solution u, the mesh x and the quantity 6(t).

4.3 Determining 0(t) from the Total Mass
From (27)

u; = (N —9)0(2) (i=0,...N). (31)

(cf. (17)).
Now consider the composite trapezium rule expression for the (known)
constant total conserved mass ©,

6~ 3 X (@i — ) (uin () + (0) 2

which when rearranged gives the expression

6(t) { (f(sc,-ﬂ — o) (N - j)) ~ 5w - xl)} =0 (3

§=0

for 6(t). Given the mesh z; at any time, we can now compute 0(t) using (33)
and then recover the appropriate solution values u; using (31).
Numerical results are shown in section 5.

4.4 A Combination Monitor

The gradient monitor gives a good solution close to the moving boundary
but is less effective near the symmetry point. We therefore propose a new
monitor function which combines the mass and gradient monitors with a
weighting parameter w,

M(u) = u — wuy (34)

13



The derivation of the moving mesh equations follows in the same way as
before (for full details see [4]). In fact the ODE system and all other equations
are just linear combinations of those used for the previous two monitors indi-
vidually. Numerical results for both the gradient and combination monitors
appear in the following section.

5 Numerical Results

We now show results illustrating the ability of these techniques to give ap-
proximate solutions of the PME problem. The system of ODEs (13,28) is
solved using the NAG routine DO2EJF [21], which uses variable order, vari-
able step size, backwards differentiation formula (BDF) to integrate the sys-
tem forward in time. Initial meshes are computed using an equidistribution
algorithm (see e.g. [1]) using the discrete versions of the monitor functions.
The initial conditions are specified using the self-similar solution (5) taken
at an arbitrarily chosen time ¢ = 0.01.

Since the approximate solution u is recovered exactly from the positions of
the nodes, and the algorithm for the nodes sweeps backward from the moving
boundary, it follows that the point z = 0 will carry the greatest truncation
error. Equidistributing the mass using 20 nodes and setting m = 1 Figure
2 shows second order convergence of the solution at z = 0 at ¢ = 1 as the
number of nodes is increased. The right hand graph in Figure 2 shows the
trajectories of the nodes. Moreover we can show how the mesh produced
for m = 1 reproduces the scaling invariance results covered in Section 2.1.
Transforming the mesh co-ordinates and porous medium solution produces
the invariant mesh and solution values with respect to time shown in Figure
)

For larger values of m, we can use the mesh refinement technique outlined
in Section 4.1. An initial mesh consisting of 15 nodes is augmented by adding
a further 9 nodes by repeatedly halving the mass contained in the last cell
until it is below a specified tolerance 10~%. Figure 4 shows the numerical
solution and analytical solutions for m = 3, this time starting from time t =
0.05. Nodes are placed tightly in the region of the moving boundary without
affecting the quality of the method elsewhere. Since mass is conserved locally
in each cell, the scaling invariance results shown earlier hold for the refined
mesh too.

We now show how the gradient monitor can be used to resolve the steep
moving boundary without the need for mesh refinement. Figure 5 presents
results in the same way as in Figure 4. From these results we can clearly
see how the nodes arrange themselves equally over the solution of range of

14
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Figure 3: The invariant transformed computed mesh (Left) and PME solu-
tion (Right) for m =1

u as expected and hence towards the developing front as desired. However
when compared to results using the mass monitor with refinement, there are
clearly inaccuracies between the generated and analytic solution.

Figure 6 shows the solution when m = 3, choosing the parameter w = 0.2
in the combination monitor (34). We can see clearly that the combination
monitor has performed well for this value of m. Both the position of the
front and the global solution are well approximated.

6 Further Applications

In previous sections the mass conservation property of the PME problem
and the presence of a Dirichlet boundary condition were exploited in the
moving mesh technique. We now turn our attention to two other problems,
one without a Dirichlet boundary condition and one without mass conserva-

15



Figure 4: Approximate and reference PME solutions for m = 3, using mesh
refinement

tion. We begin with a model problem associated with semiconductor process
modelling [22].

6.1 A Semiconductor Model Problem

A simple model of semiconductor dopant diffusion is

16



=0.04 whr

1 S R (k1

——____‘—‘—__;_
ihin o
sl o
wdf v
oz 02
" 1. : \ " i 2 . s . . . A
(1 o1 0z 03 04 s am  6r am 0¥ 1 W o1 0z 03 04 05 08 47 o0 08 v
¥ 1
104 =06
il v : - o :
14 14
12 12

=08 =10

Figure 5: Approximate and reference PME solutions using gradient monitor,
m=3

ue = ((u + €)ts)a, (35)
on a fixed region z € [0, 1], € being a constant of the order 10~2. Homogeneous
Neumann conditions are imposed at both boundaries, z =0 and z = 1, and
the dopant u has an initial Gaussian distribution

u(z,0) = e,
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Figure 6: Approximate and reference PME solutions using the combination
monitor, m = 3 and w = 0.2.

Since the semi-conductor problem is defined on a fixed domain, the bound-
ary constraints on the ODE system are

It is clear that the solution will have a time-dependent solution value at
both boundaries. For the PME the zero value of u at the moving boundary

18



allowed the solution to be be derived directly from the mesh and the quantity
0(t) via the algebraic relations (17) or (31) (see Sections 3.2, 4.3). In order
that the method should continue to permit this reconstruction, a known
solution value at one point of the mesh is required.

Here we shall derive an expression for the time derivative uyof u at z =
zy = 1 by considering the integral form of equation (35) in the interval
between zy and the cell midpoint zy_1. Given the Neumann condition at
z = xx we have that

TN TN
/ ’U,td.’L' =S / ((’U, + E)Um)x dxr = _(’U + f)ux|m=mN_% (36)

Ty 1
N—g N-3

Discretising in an upwind manner as in (18), we obtain an approximate
expression for uy at £ =1 via

- n UNy —UN-1

Despite the low gradient of the solution at z = 1 an appropriate mesh
spacing is required near that point during the solution to ensure accuracy of
the value uxn and hence the global solution. We found that for this problem,
in order to ensure an adequate mesh resolution in this area we needed to add
an extra constant term a to the combination monitor, giving

M(u) = u — wug + a. (38)

As in section 3.1, we start by equidistributing the monitor function over
the cells,

T; 1(t)
0(t):/xl(; (w—wug +a)de  (i=0,...,N—1).  (39)

(cf. (6)).Differentiating with respect to t and using (35) yields the ODE
system

Zi?() B 0,
[(u+ €)ug — w (((u+ €)uz),) + (u — wuy + )T = 6 (40)
(i=1...,N-1),

zy = 0

(cf. (23)), together with a differential equation for the time derivative of 6(t)
which is easily found to be
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f=— U+ €)ug)s]oh (41)

r=0"?

W
=D [((
To complete the solution set we add the integration of uy at z = 1 in

equation (27), as an extra equation in the ODE system. This leaves us with
the system of variable

(:EO)xl)x?) olg ‘)xN—l7mN7uN)'

An algebraic expression corresponding to (27) is found by considering a
discrete approximation to (39), as in section 4.2. In the present case the
approximate mass 6(t) is

0(t) = /:Hl (v — wug + a)dz

1 ) . :
= §(mi+1 — x8) (Uig1 + i) (Tir1 — 78) — w(uipr — w;) + @z — i)
(6=0,...,N—1) (42)

The ODE system is integrated by the same NAG routine as in the PME
case. For full details see [4].

Initial meshes are once again generated using a discrete form of the mon-
itor, namely

M,y = Ui + Uip1 il = i ta
2 2 Tip1 — s

In the numerical results below the parameters in the monitor function are
set to be w = a = 1. We analyse the performance of the moving mesh method
in this application by comparing numerical solutions with a solution on a fine
stationary regular mesh consisting of 10° nodes, using a semi-implicit scheme
and adaptive time-stepping.

Figure 7 shows error convergence at both boundaries. Both convergence
histories suggest that the method is again of second order accuracy. The
value of € has an effect, with large errors incurred for the faster diffusion
rate.

Figure 8 shows the generated solutions for ¢ = 0.01. Although the so-
lutions were only generated over the domain [0,1] it is convenient to plot
the profiles with their reflections in z = 1, to illustrate the node movement
when two adjacent concentrations of dopant interact at the far boundaries, as
happens in the real problem. Figure (9) shows the trajectories of the nodes.
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Figure 7: Absolute error at z = 1 and z = 0 (Top). Logarithmic plots of the
error to show convergence (Bottom).

6.2 A Blow-up Problem

Finally we consider a problem involving solution blow-up. This illustrates
that the method may be used to tackle problems which do not conserve mass.
The approach is similar to that used for the semiconductor problem above,
but an extra term is added to the ODE system, this time for the rate of
change of the integral of mass over the domain.

The equation considered is the Fisher-type equation

Up = Ugy + U (43)

[7] over a unit domain with initial and boundary conditions

u(z,0) = 20sin(7r(% —z))

u(0,t), = u(l,t) =0

This problem occurs in physical models which develop singularities at
some finite time 7. Examples of such behaviour exist in the solution of
equations describing combustion in chemicals or chemotaxis, with the blow-
up representing the ignition of a heated gas mixture. In particular, we seek
a method to accurately reproduce the blow-up time T', given in (7] to be
approximately 0.082291, with the blow-up taking place at the origin in the
form of an isolated spike of increasingly narrow width.

We use the monitor function

M(u) = a — wuy,. (44)
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Figure 8: Approximate solution for the semiconductor problem with e = 0.01.

where it is anticipated that the presence of the first derivative will help to
provide fine mesh spacing as the solution approaches blow-up and steep gra-
dients develop, while the additional constant term « preserves a reasonable
mesh size in the solution close to the right-hand boundary.

In deriving the appropriate moving mesh equation we still keep the same
structure in the ODE system but add an extra equation to approximate to
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Figure 9: Node Trajectories for semiconductor moving mesh solution

the time derivative of total mass
1
6, = / udx
0

This can be found by considering

TN TN
0, = / uds = Uz'w:xN +/
T

1]

Q

(uy —un—1)  1R=
(e v T2 Z sin =) ) (49)

As in sections 3.2,4.2 the moving mesh equation results from differenti-
ating the static EP with respect to time, i.e.

d i+
dt Jz
leading to the ODE system

(o — wug)dz = (46)

[£(0 — wug)] | = 0 + 2 (@ — Wg)|gma; + W [um + uz] @)

T

where

—W

O=§—1

2]1%N
(o2 + u7]
1

with £, = 2y = 0.

The ODEs are solved as before. The resulting u solution again comes from
discretising the stationary version of (46) and using the Dirichlet boundary
condition on u at zy.
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Applying the moving mesh algorithm a satisfactory result is obtained.
The integration reaches a time of 7' = 0.08155173, which is a reasonable
estimate compared to the time to blow-up calculated by Budd et al for the
same problem in [7]. Moreover, the value of u at z = 0 compares well with a
value of 10'°. The left hand side of Figure 10 shows that the mesh trajectories
tend towards the blow up region. As can be seen, the nodes move rapidly
towards zero as the solution develops. To give an idea of the scale of the
solution and the rapid growth, the right hand side of Figure 10 shows the
maximum value of u with time.
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Figure 10: Mesh trajectories (Left) and evolution of u(0, t) using a change of
monitor function (44) with o =1, w = 0.8.

7 {Conclusions and Further Work

In this report we have described a moving mesh method for non-linear
parabolic partial differential equations with or without moving boundaries.
The method relies on a monitor function whose local integral is a conserved
fraction of the total integral. The resulting algebraic moving mesh equation
is combined with the underlying PDE to form a differential equation system
for the mesh points. Under discretisation the moving mesh equation allows
the solution to be expressed in terms of the meshpoints, so only a single
system of equations is required to be solved.

The method is described with reference to a porous media equation
(PME) problem with a moving boundary. The choice of a density moni-
tor function equal to the dependent variable, suggested by scale-invariance
properties of the PME, is found not to resolve the solution at the moving
boundary. The situation is redeemed in two ways, either by incorporating
mesh subdivision into the method or by introducing alternative monitors.
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For a fixed number of nodes the method is generalised to allow a gradient
monitor to be used but this only partially solves the difficulty and a better
solution is achieved with a combination monitor.

The method has been adapted to treat problems with Neumann condi-
tions at fixed boundaries and also to handle problems with source terms which
arise in blow-up problems, although again the monitors used are geometric
rather than scale-invariant. Generally second order accuracy is achieved.
The moving mesh method appears to be capable of simulating problems
with non-linearities, moving boundaries and singularities in these types of
problems.
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