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Abstract- A one-equation model of traffic flow is used based on a non-
convex function derived from real data. The exact solutions are constructed
which are used to test several numerical schemes. Results from the best of
the schemes are then compared with real data.

1 Introduction

Traffic flow can be modelled using microscopic car-following theory, macro-
scopic fluid dynamic based models, or combinations of both (see e.g. Da-
ganzo [2], Nagel [9] and Helbing [3]). This paper considers the application
of the Lighthill- Whitham-Richards (LWR) model of traffic flow proposed in
the 1950’s [8], [11] to averaged actual data gathered from the M25 motor-
way (supplied by the TRL/Highways agency). It describes different fitted
velocity functions and compares analytic solutions to two test cases to the
numerical solutions from four different numerical schemes. The paper then
compares numerical solutions from the best of these schemes to the M25
data.

The model studied is based on a single carriageway with no on or off
ramps, and data is averaged over all available lanes.

Section 2 describes the one-equation model, and considers a number of
different fitted velocity functions. In Section 3 we derive the exact analytic
solution to two test problems. Section 4 compares the numerical solutions
from four different numerical schemes on the two test problems from Section
3. Then in Section 5 we compare the averaged real data from a stretch of
the M25 with no on/off ramps to a numerical simulation using the most
accurate scheme from Section 4. Conclusions are given in Section 5 and
Section 6 suggests further work.



2 One-Equation Model
The LWR model,

dp  0(pV (p)) _

'37 + oz . 0, (1)
is in effect a conservation of mass equation, where p is used to represent
the traffic density and V (p) is the velocity associated with that density.
One of the basic assumptions about this model is that the velocity is a
function of density alone, and that consequently any changes in density are
immediately reflected in changes in the velocity. Obviously this argument
has some flaws: for example, in practice reactions to changes in density do
not happen instantaneously.

The velocity V(p) and flux f = pV(p) for a given density are crucial in
modelling the flow. The overall shape of the graph of V(p) is still under
debate, particularly for congested traffic flow.

There are many options for the choice of V (p). The original choice in
[13] was

Vi (p) = Unas (1- =2-) @

pmaz
where Up,qz is a given maximum speed on the road (typically 140km/h) and
Pmaz is @ maximum density (typically 220 veh/km).
By considering averaged real data collected from a stretch of the M25,
it was observed that the non-convex flux function,

Va(p) = Umame—9p/pmu (3)

captures many of the properties observed in the real data, although not all,
see fgr in Fig.1 (right).

Another velocity function, similar to the one used by Kerner and Kon-
hauser in [4], [5] and [6], is

Va(p) = (T’Z) : (4)

e <
where a = 120, b = 0.15p,4; and ¢ = 0.06p,,,, are good choices for approx-
imating the observed data.

Fig. 1 (left) shows the three velocity functions (V4, V3, V3) plotted against
p, compared to the real velocity data Vg, and Fig.1 (right) shows the corre-
sponding flux functions, (fi, f2, f3) plotted against p, compared to the real
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Figure 1: VR is the real averaged data, Vi, V5 and V3 are velocity functions
(left). fg is the real data averaged for the momentum (pv), and f;, f2 and
f3 are the flux functions (right).

flux data fg (right). The flux graph is often referred to as the Fundamental
Diagram.

To process the real data, we calculated the average velocity and flux for
the given densities as follows. Since we are considering averaged behaviour
along the whole stretch of road to get the typical values, data was considered
at each post, for each lane. The data was collected over a week as an average
velocity (km/h) over a minute period for each lane, together with a count
of the number of cars passing each post in each lane during that minute,
(veh/min). The density at each post for each minute interval was calulated
using the equation

e = count * 60
= velocity

The densities, and corresponding velocities, were sorted and grouped into
small intervals of density. Mean velocities and densities were then calculated
for each interval, (Vg, pr). The average flux, fr, is then calculated from

fr=pr*VR.

It can be seen that f3 follows the real data well for small p, but for large
p there is no good match.



3 Test Problems

To test the different schemes considered later in the paper, these were com-
pared with exact solutions. Here the densities and velocity functions were
normalised to simplify the calculations.

1. Square Wave

The first test case is a square wave of height 1 /2 with zero density
outside of the wave, Fig.2. The left side of the wave was positioned at
a distance of 10 unit lengths from the left hand end of the road, and
the right side of the wave positioned at 20 unit lengths. Hence

2
p(z,0) = (5)

0 otherwise.
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Figure 2: Test problem 1.



2. Half-Cosine Wave

The second test case is a half cosine wave joined to a discontinuity,
Fig.3. Again, the density outside of the perturbation was zero. Here

Tcos? (32) 10<2<20

p(‘”? 0) = (6)
0 otherwise

Figure 3: Test problem 2.

Analytic solutions

The exact solutions are obtained using the method of characteristics.
Using equation (1) with velocity function (3), normalised, i.e.

V(p) = e, (7)
so that
f(p) = pe™ (8)
we have from
dp , 0f(p) _ Op op _
T o ot TP =0 ©)



that

() = & = (1-99)e~. (10)

Now, using the chain rule, we know that

d_opds 0

dt ~ dx dt Ot
So that substituting % in (9), we have

dp Opdx Op
Fril iy a(P)% =0,

giving
dp 0Op (dz ) _
E*%(E—G(P) =0.
Therefore, %‘;’— = 0 on the lines

%~ alp), (11)

which implies that p and hence a(p) is constant along these lines. These are
the characteristics, which are straight lines in this case given by

T = at + o, (12)

or

T — &g
t= 13
%0, (13)

where z is the value of z at t = 0, and

a = (1 - 9p(zo, 0))e~2#(=0:0) (14)

from (10).

To obtain the exact solution at (z,t), we trace the characteristic that
passes through that point back to the initial density profile, where p has the
same value on that characteristic, i.e.

p(z,t) = p(20,0) = po.



When characteristics cross, however, the solution becomes multiply defined
and the continuous theory breaks down. This is encountered immediately
when considering the square wave (5) at ¢ = 10 (see Fig.5). A shock is
formed moving with speed

_ m _ fr - fi

el e (15)
_ 1/26_9/2 e 0 _ _9/2

= Tip-o 0

using the Rankine-Hugoniot jump condition [7]. The fact that it is a shock is
confirmed by checking the entropy condition, due to Oleinik (see [7]), where

indeed
f(pr)_f(p) <s< f(Pl)—f(p), (16)
Pr—P pi—p
is satisfied Vp .

For the discontinuity at £ = 20 we have a different scenario. The char-
acteristics to the left of the discontinuity have negative slope (= —2/3¢%/2),
whereas to the right the characteristics have positive slope (= 1). Therefore
these characteristics do not cross, (16) is not satisfied, and hence there is
no single shock connecting these states. With the non-convex flux function,
however, there is a point of inflection. In this instance if p; and p, are both
to the left or right of the point of inflection, then the void created between
the characteristics is filled in with an expansion fan. In other words, if the
convex hull of the flux function is the same as the flux function itself between
p1 and p,, then the solution is purely an expansion fan. We therefore need
to check where p; and p, are relative to the point of inflection.

The point of inflection of the flux function (8) is at p = py, where

f"(pr) = (81pr — 18)e™%1 =0,

hence,
2

pr= 9’ (17)

Since at x = 20 p, < % < p1, p1 and p, are on opposite sides of the point
of inflection, the flux function and its convex hull are not the same. The
discontinuity therefore comprises of a shock and an expansion fan, separated
at pr, the point where the tangent to the flux function passes through (pi, fi),
see Fig.4. This ensures that we have the correct entropy-satisfying weak
solution ([7]).



surprising, as Fig.1 (right) shows that f3 mimics the average real data most
closely at lower densities, whereas f; is closest at higher densities.

Fig.9 (right) shows the Second Order scheme with the flux limiter, using
the flux function f, against the real averaged data over a periond of five
minutes. Even thought this is the best scheme with the best fitted flux
function, the results are not particularly good. The height of the peak
doesn’t match, and as time progresses its position no longer corresponds to
the peak in the real data.

It is likely that a flux function that fits the real data more closely will
perform better. This could achieved by splitting the flux function into two
sections, one for congested flow and one for freeflow traffic. However the
limitations of the model could be at fault.

6 Conclusions

We have considered the one-equation LWR model, and compared different
possible flux functions to some real averaged data from the M25 motorway.
We devised some exact solutions to two test cases for one of the non-convex
flux functions, and tested some schemes against these. We took the best of
these schemes and tested the model against M25 data for the different flux
functions.

The test cases showed the complex nature of solutions when dealing with
a non-convex flux function. For example, a discontinuity may consist of a
combination of shocks and expansion fans, depending on the relative values
of the p; and p,, to any points of inflection of the flux function. The Second
Order scheme gave the most accurate results with the test cases. The real
data showed the performance of the different flux functions, with accuracy
varying between the functions according to levels of traffic. The best scheme
with the most accurate flux function still gave unsatisfactory results even
for short time simulations. It is therefore clear that a more sophisticated
model is required.

7 Further Work

As mentioned before, a better fit to the real data for the flux function
may produce more accurate simulations. This may be achieved by splitting
the flux function into two (or more) sections, having one fit for freeflow
and one for congested flow, the join between the two being continuous and
differentiable.

20
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Figure 5: Characteristic diagram for test problem 1 (left). Exact solution
of density along road for test problem 1 (right).

g = -9
s=——=(1-9p7)e™"’T,
pr—p = (L~ 97)
and since p; is unchanged while the shock is moving, pr is constant, and
thus so is the speed until the shocks collide (Fig.5).
To calculate the expansion fan to the right of the shock, between pr
and p, = 0, given (z,t) we find the slope of the characteristic, 1/A, (where

f'(pr) < A < f'(pr)) from (13), i.e.

A:””‘fo_ (23)

Using A we can again find p using Newton iteration, from

F(p) = (1-9p)e™ = 4,

F=(1-9p)e™% — 4,

dF
% = (81p — 18)e™. (24)

The density p can then be found using (22).

9



When the shocks meet, we are, in the first instance, left with a discon-
tinuity of height pp followed by an expansion fan (Fig.5 left). This new
discontinuity is a shock whose speed can be calculated using (15), where
pi = 0 and p, is given by pr. The shock therefore moves with positive
speed and hence, as it moves, its height decreases, thus changing the shock
speed. The shock path will therefore no longer be a straight line in the
characteristic diagram. The shape of the shock can be calculated numeri-
cally using Euler’s method. Starting at the initial position of the colliding
shocks, we calculate the instantaneous shock speed, and using that, move a
distance éz in time 6¢. This new position (z,1) crosses a characteristic from
the expansion fan, so A can be calculated using (23), as can the new p,,
(24), and hence the new shock speed (15). This is then repeated as far as is
required. The resulting density profile will be a shock moving with positive
but decreasing speed, with decreasing height, followed by an expansion fan
of increasing width (see Fig.5 (right)).

The second test case, (6), can be treated similarly. The discontinuity is
of the same form, and has the same properties as for the square wave, i.e.
a shock from p; = 1/2 to pr, and an expansion fan from pr to p, = 0. The
shock moves with constant negative speed, while the width of the expansion
fan increases with time. The wave speeds, a, of the curved section (between
¢ = 10 and z = 20) vary from a = 1, decreasing to a minimum of 2/9e¢~2
when f“(p) = 0, (17), then increasing again to f/(p,) = —7/2e~9/2,

Since the slopes of the characteristics vary in this way, inevitably there
will be a point where some cross, and hence form a shock. To find the
position of the initial shock formation it is necessary to look at the char-
acteristic envelope to determine when two neighbouring characteristics first
cross, that is have the same z value for a given time, t. To do this, we look
at where a small change in the initial position zo, produces no change in z,
i.e.

dz
— =0. 25
dg = ° (25)
Since z is given by (12), i.e.
T = at + zo,

a is as in (14) and

1 TT
po = p(20,0) = 50032 (2—00) y

10
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Figure 6: Characteristic diagram for test problem 2 (left). Exact solution
of density along road for test problem 2 (right).

for 10 < zo < 20.
Differentiating  w.r.t. zo gives

de da
—=—1+1 26
d.’l)o d:l?o + ! ( )
where
da  da dpy —900 ( T (ﬂ'ivo)>
dzo  dpodzo (8190~ 18)e*) 20°"\10//"
Hence, deio = 0 when

(&)
N d(L‘o ‘

To find the first time that the characteristics cross, we seek the minimum

value of ¢ that makes (25) true, i.e. where E%{ = 0 (and % > 0). This
0

happens when zo = 11.643, i.e. for (z,t) = (12.830,2.251). We can therefore
construct the full characteristic diagram (Fig.6 (left)).

11



4 Schemes

Since equation (1) is in conservation form, where p is the conserved variable,
a number of conservative numerical schemes can be applied to it. By choos-
ing the velocity function V; of (3) and considering initial conditions (5) or
(6), results can be compared to the analytic solution (Fig.(7) and Fig(8)).
The numerical schemes considered here are

e First Order Upwind with an Entropy Fix ([7])
e Second Order with a Flux Limiter (Minmod)
e Engquist-Osher

o Lax-l}riedrichs

4.1 First Order Upwind

This scheme subtracts Vi1 Ap;_ L from either the left or right node, de-
pending on the wave direction, where Apj_% = pj = pj-1, and where v;

+}
is defined by

Vit

(27)

D=

ot [£ (o) - £(e7)
Az Piv1 = P} -
This is the Courant number, which is ﬁ—ix wave speed.

To start with, set p;-""l = p} Vj.

Hv, 1 >0 then

=3
A A FRVV I
else v, 1 < 0 and
I=3

+1 1
P_;'L—1 - P;jl - Vj_liAPj_%,

noting here that if v;_1 = 0, then the wave speed is zero, and the density
2
does not move.
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4.2 First Order Upwind with an Entropy Fix

A problem with applying the First Order Upwind scheme to an entropy
violating discontinuity across the sonic point p, is that with a non-linear
flux function the scheme may calculate the overall flux in the cell to be zero,
hence the numerical solution gives a shock. In the case of a convex/concave
flux function, the discontinuity should be an expansion fan. To overcome
this a sonic entropy fix is required. For a convex/concave flux function,
an intermediate non-physical point (p,, fm) which is the intersection of the
tangents at p, and p; is found.

For a non-convex flux function however, the intermediate point is the
intersection of the tangent at p, and the tangent that forms the convex hull
of f(p) from p; (see Fig.4), where pr is found as before (18)-(22). The point
(Pm, fm) is then found by equating the derivative of f to the equation of the
slope of a line for the two tangents, i.e.

fl(pr) = :::—:—fi, (28)
and
f'(pr) = %. (29)
Eliminating p,, from (28) and (29) we have that
fm = fT + fI(PT) (f,(ﬁr()pr_) f_,((;T)) (Pr - pT)v (30)
where
a= ﬁ —Jr :
Pr — PT

The First Order Upwind with the Entropy Fix is then implemented by
updating the affected nodes, i.e. all points that satisfy p, < ps < p; in this
case, with

n n At
P =t = 5 Un = 1)
At
nt+l _ n _ _
pr pr A(II (fT fm)

We can find p,, by substituting f,, back into (28) or (29). Once (pm, fm)
is found, the single discontinuity is treated as two separate discontinuities

13



Comparing echemes with wshyin sciufion i line= 17,02 w0 i 11
¥ T T 2

'I o1 ol
} | e e T —
!. m w0 L

v 20,70 lip 37 58

0

aaf

e 4334 e 84,12

j/f S E= 5

i
] ] El o ] 0 40 .

10 F 34 an
Drtenurce wasng Poad Road km Foad km

Figure 8: Comparison of 4 different schemes at a given time for test problem
2 (the half cosine wave) (left). Comparison of Second Order with Minmod
to the analytic solution for test problem 2 at different times (right).

test problem of the half cosine wave compared to the four above schemes,
and (right) shows the analytic solution compared to Second Order with
Minmod at different times.

As expected, the second order scheme produced the best results. First
Order Upwind with Entropy Fix and Engquist-Osher both gave the correct
behaviour, but Lax-Friedrichs displayed too much diffusion, causing it to
lose much of the shape definition.

5 Real Data

After considering the behaviour of the schemes on the test problems with
artificial initial conditions, we now see how the models cope with reality. The
real data we are using was collected from a section of the M25 motorway
during July 1999, between junctions 10 and 15. Along that section there
are a number of junctions, or on/off ramps, where the number of lanes in
the road changes. To convert the data into a form that is suitable to use
as initial conditions for our model, we therefore averaged the data for the
four lanes giving us an average single lane. For this average single lane we
calculated the average velocity, 7, and average density, 5, using

18
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Figure 9: Comparison of 3 different flux functions at a given time, using
real data from the M25 09:30 on the 15/07/99. Simulation was run using
Second Order scheme with Minmod, and snapshots were taken after 2 mins
(right). Second Order scheme with Minmod using f, with M25 data from
09:30 15/07/99 for 5 mins (left).

1 (A count; * 60
p = — ——— 37
F=% (; velocity; ) ’ (37)
where n is the number of lanes and velocity; # 0. When velocity; = 0, one
count;
expects that count; = 0 also, hence a zero value for velocity; 15 assumed.

For the boundary data, when required, the real data averages were used
and linearly interpolated between the minute intervals to accommodate the
small time step sizes. This was done at both ends of the stretch of road, but
only used when the wave direction required boundary data.

Yoty velocity;  count;
B 2 _j=1 count;

The Second Order scheme with the Minmod flux limiter was applied
using the three different flux functions (f1, fo, f3), of section 2, and the
results are plotted against the real averaged datain Fig.9 (left). The function

f2 seems to capture the position of the highest peak most accurately, whereas
f3 appears to do slightly better at lower densities. This is perhaps not

; (38)

<l
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surprising, as Fig.1 (right) shows that f3 mimics the average real data most
closely at lower densities, whereas f; is closest at higher densities.

Fig.9 (right) shows the Second Order scheme with the flux limiter, using
the flux function f, against the real averaged data over a periond of five
minutes. Even thought this is the best scheme with the best fitted flux
function, the results are not particularly good. The height of the peak
doesn’t match, and as time progresses its position no longer corresponds to
the peak in the real data.

It is likely that a flux function that fits the real data more closely will
perform better. This could achieved by splitting the flux function into two
sections, one for congested flow and one for freeflow traffic. However the
limitations of the model could be at fault.

6 Conclusions

We have considered the one-equation LWR model, and compared different
possible flux functions to some real averaged data from the M25 motorway.
We devised some exact solutions to two test cases for one of the non-convex
flux functions, and tested some schemes against these. We took the best of
these schemes and tested the model against M25 data for the different flux
functions.

The test cases showed the complex nature of solutions when dealing with
a non-convex flux function. For example, a discontinuity may consist of a
combination of shocks and expansion fans, depending on the relative values
of the p; and p,, to any points of inflection of the flux function. The Second
Order scheme gave the most accurate results with the test cases. The real
data showed the performance of the different flux functions, with accuracy
varying between the functions according to levels of traffic. The best scheme
with the most accurate flux function still gave unsatisfactory results even
for short time simulations. It is therefore clear that a more sophisticated
model is required.

7 Further Work

As mentioned before, a better fit to the real data for the flux function
may produce more accurate simulations. This may be achieved by splitting
the flux function into two (or more) sections, having one fit for freeflow
and one for congested flow, the join between the two being continuous and
differentiable.
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Application of high order schemes to two-equation models, e.g. Payne-
Whitham [10], [13]) and Aw-Rascle [1], and comparisons with M25 data will
be considered in a second report.
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