MOVING FINITE ELEMENTS: REGULARISATION TECHNIQUES
M.J. Baines

Dept. of Mathematics
University of Reading

Numerical Analysis Report 19/86

Keywords: Moving Finite Elements, Regularisation.

The work reported here forms part of the research programme of the

Institute for Computational Fluid Dynamics at Oxford and Reading.



CONTENTS

81

§2

§3.

§4

§5

§6

§7

§8

Introduction

Element Minimisation

Need for Regularisation

Regularisation by the Tangential Velocity
Other Regularisations

Two Dimensions

Scaling and Local Variants

Conclusions

References

Appendix A

Appendix B

Figures

11

20

23

34

38

43

Al

a4



§1 Introduction

In recent years progress in the use of Moving Finite Elements,
as introduced by Miller [1], has taken place along different paths.

In Berkeley, Miller and his collaborators have seen penalty functions
and implicit methods as integral parts of the method, thus avoiding
singularity at the expense of stiffness. In Reading a number of workers
have pursued an explicit approach to the problem, avoiding penalty
functions and making explicit provision for singularities. In general
the Miller approach has been able to solve harder problems, albeit

at more expense, while the Reading approach has produced very fast

but perhaps less robust algorithms.

Penalty functions, or regularisation, are implemented in the approach
of Miller & }Carlson [2] element by element in an ingenious way. Indeed
the MFE matrix itself is constructed in the same way, as summarised
in §2 below. There is a relation here with the MFE-plus-constraints
approach of Baines [3]. The analysis reveals a 5 matrix decomposition
of the (unregularised) MFE matrix, which shows the link between the
assemblies of Miller & Carlson [2] and Wathen & Baines [4].

Some kind of special procedure is needed to avoid singularities
in the MFE matrix. If nodes are collinear or coplanar the MFE matrix
becomes singular, but the root cause of the trouble lies in the
representation by linear elements. For very smooth solutions,
representation by a piecewise linear function with free nodes
automatically overspecifies the solution. Some restriction is needed
in the specification (e.g. constrained node movement) to realise a
well-conditioned problem. Miller's penalty functions do precisely

this in a continuous manner, their invention depending on somewhat



mechanical analogies [1]. The Reading group on the other hand has
opted for a cut-off below which a reduced problem is solved [4].

Again, node overtaking destroys the basis of the MFE equations.
This is avoided using "spring function" penalties by Miller and via
preconditioning and restricting the time step by the Reading group.

In this report we analyse the need for regularisation (in §3)
and discuss possible regularisations in relation to the fast methods
originating at Reading [5]. The aim is to invent a regularisation
technique which can be used with explicit time stepping, whose MFE matrix,
when approximately preconditioned [6], is well behaved. This is done
by regularising with the "tangential" wvelocity, which produces a
regularising term which is in some sense orthogonal to the
unregularised MFE matrix. Moreover, it has a decomposition which
allows the good conditioning of the MFE matrix to extend to the
singular case. This is discussed in §4. By penalising variations
in the tangential velocity from the previous time step (i.e. the
tangential acceleration), a smoother more robust solution is obtained
from the explicit method. This is described in §5. The extension
of the analysis to two dimensions is given in §6, where the results
of the full analysis are replaced by a simplified regularisation which
takes account of matrix properties rather than by following rigorous
regularisation via the tangential velocities.

Section 7 refers briefly to scaling matters and to a local
formulation. In §8 we summarise the results and discuss a
further regularisation associated with small node spacing.

I particularly wish to thank Colin Please for many valuable



discussions. Thanks are also due to Neil Carlson and Andy Wathen for
illuminating comments on assembly and to Robin Dixon for programming

assistance.

There are two Appendixes. The first substitutes tangential
regularisation by "horizontal" regularisation, i.e. regularisation
of the nodal speeds, on the grounds that this gives a simple direct
attack on the problem of near—indeterminacy on node overtaking.
The second describes a family of conservative moving element methods
using the null space of the so-called B  equation, gives a geometric
construction in the case of the local method and points out that all
methods described in. this report (and some others) fall into this

framework.



§2 Element Minimisation

In the Miller & Carlson approach an approximate solution of the

equation
u, = L (u) (2.1)
is sought by minimising the L2 norm
| vp -2 |, (2.2)
in the space of moving finite element approximations (in one dimension)
v = )a, o, v, = a.o. + 5. B (2.3)
Z J 3 t z J 3 J J
J 3
(see fig. 1 and refs. [1]1, [4]), as follows. 1In each element k
write
(2.4)

U = A by Sy Gt o0 0T Sty

(see fig. 2), as if the nodal speeds at nodes common to two

continuity of

elements were independent (i.e. ignoring
a, 8). Then, in each element k, the square of the L, norm (2.2) may

be written (apart from a term independent of zk) as

o T
¥ Ek 5 - ZZk gk (2.5)



a - a
k1 T T
5 Z2mm mn
o k1 _ 1 T _ _
where % = | & i Ek =z A Sk o mo=[1 mk] (2.6)
k2 T T
5 mm® 2mm
k2
T i
and §k={<¢k1 I-C(u)>r_mk<¢k1 I£(n)>r<¢k2 ’£(u)>’_mk<¢k2,£ (u)>} (2.7)
with Ask = sk+1 - Sk' The sum of the element contributions (2.5)
to%the norm (2,2) is
L @ B 8 - 20 Gy, (2.8)

k

Miniminisation of the square of the element norm over ékl' ékl'

ék2’ ék2 leads to the (singular) system

By ¥p = S (2.9)

for each k. If, however, we minimise the total L2 norm, with the
constraints

a = s —

k1 - %k-1,2 k1~ Sk-1,2 ' (2.10)

we obtain the standard MFE system, non-singular in general.



The technique is as described in [3]. Because of the constraints

the number of free unknowns is reduced by roughly half. Write

ak_1,2 - N ~
s a I 10
it & = Rj ki where Rj = g , 12 = (2.11)
A1 k1 I, F
k1
. . » u - - - T
With the usual definitions y = {..., aj, Sj' ...} and
i? = { gg }, we may write
g = R 2 (2.12)
_“ .
I212 00
T
where R = (2.13)
00 12 2.

Then the total L2 norm (2.8) (squared) can be written (apart from

a term independent of ¥ ) as

YR ERy -2y ¢ (2.14)

where E = diag {Ek} s, 9 = RG. Minimisation of (2.14) over

y yields the system

RERYy = g - (2.15)



The system (2.15) is the standard MFE system and shows a

decomposition of the MFE matrix A (see [4], [5]) into

A = RTUER. (2.16)

This may be compared with the decomposition described by Wathen &

Baines [4],

A = MM, (2.17)

where Cc = diag {Ck} , M = diag {Mj}, (2.18)
Dp1r Pe1” Opqr 9o’ L™= ey

c = ;oM = . (2.19)
L Opar Pk1” Pka %2” 1 - oy,

Since it is possible to decompose Ek further into

i A}II -
Ek = Mk Ck Mk (2.20)
1 —mk 0 0
where ﬁ£ = . (2.21)
0 0 i -m, J
we may write
E = MchH (2.22)



where M = diag {E£}. This yields a five matrix

decomposition of A, namely,
C M R. (2.23)

Coupling MR gives M and hence (2.17). Coupling ﬁT cM gives

E and hence (2.16). Note that M is node based but M is element
based. The decomposition (2.16) allows the slope m, of the
solution to be brought into the equations elementwise, unlike in the
decomposition (2.17). Moreover regularisation terms may also be

introduced elementwise, as we shall see below.

§3 Need for Regularisation

To exhibit the need for regularisation we transform to a rotated
system of coordinates (see fig. 3) which approximately aligns with
the tangential and normal directions of the underlying solution curve
at a node. Let mj be an estimate of the slope of the tangent to
the solution at a node j, for example the average of the slopes in

adjacent elements. Then

(fig. 3), where

(3.2)

[ex!
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Q
0
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tan ej = mj. The resulting form of the L2 norm (2.2) is (apart

from a constant term)

=T

v ocitty - 2 (3.3)
where i = , Nj’ TJ, I
o o ;
Pi-1 V51
M = diag {ﬁj}, Mj = 7
V.,
M543 Vel
[ (3.4)
<o, , £(u)>
é = {éj} ’ éj == '
<. , L(w)>
and C is as in (2.19). The entries in ﬁj are given by
] ] !
.., = cos 0, + m, sin 6,
SL 3 j¥t 3
r (3.5)
vj?% = sin ej - mj¢% cos ej
which correspond to &j and Ej' respectively, in the sense that
@, =u, o, , B,= v, o, . (3.6)
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The corresponding MFE system is

MY cm (3.7)

LI
]
Kl

~

=4 mj (near to parallelism), then

113

It is clear that if m, m.
j-% j+i

Vv, - are both nearly zero and Mj has an almost zero second column.

j+i

As a result the value of Tj obtained by minimising (3.3) is
arbitrary. Computationally, a large spurous value of Tj may be
produced.

This may also be seen in the elementwise formulation of Miller
and Carlson [2], prior to assembly and without regularisation. In

each element k the contribution to ut is

Mot Mg B Vg Trt O+ W No S0+ V) Ty 9y (8r.8)

(c.f. (2.4)), and the square of the L2 norm (2.2) is (apart from

a constant term)

(3.9)

NG Lo
x
i}
=
ING e
=

1
N
101
=

S ,
Ng1 2W PMeVkr MMk PraVke
) 2

O S T S| 2y 1M1 2V Yki¥k2  Vk1k2
where Y T . B = Z Ask 5
Nio Mober MoVkr o M MYk

] 2
T2 Viober VioYkr 2VkeMk2 V2

(3.10)

and

=T
gk = {uk1<¢k1 ’£(u)>'vk1<¢k1 r-c(u)>ruk2<¢k21£(u)>r\)k2<¢k21£(u)>} (3.11)
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(c.f.(2.06)). Near to parallelism Vkl = vk2 z 0 and all coefficients
multiplying Tkl' Tk2 are very small, allowing arbitrary T's as
before. The situation is unaltered by constraints, since it occurs

at each end of each element.

§4 Regularisation by the Tangential Velocity

To avoid the ill-conditioning described in §3 it is proposed
to add regularisation terms. The terms needed in the regularisation
are those which add into the coefficients of the T's to prevent
such coefficients going to zero in the event of parallelism. We
therefore add T? terms to the quadratic form coming from (2.2),
following Miller [1]. We describe this in the elementwise formulation
of Miller and Carlson [2].

Consider first addition of the regularisation
g2 "VTHZ, (4.1)

where VT is the (notional) wvelocity of points along the tangent
to the solution curve. In the finite element representation we may

approximate this by the piecewise linear function

v_o=) T a., (4.2)
J

and then the elementwise quadratic form (3.9) is augmented to become

(4.3)

161
+
m

9

Y Py Iy

I e
jeal]
=
ING e
-

I
[\)
I e



e 12 -

where F. = As 5 (4.4)

In the case of parallelism the coefficients of T do not vanish,
and the T's are now determined by the minimisation. However, for
this regularisation, since § is unaffected by the minimisation,
the T's come out to be zero. This point is taken up again in §5.
We note that in the non-parallel case the quadratic form (4.3),

when constrained as in §2, becomes

T RTER+ S RTFR y-2¥ 3 (4.5)
where
E = diag {Ek} , F = diag {Fk} . (4.6)
This may be rewritten as
yRT E+eF) Ry -27 3 - (4.7)
Now recall that we may decompose Ek (c.f. (2.20)) into
B =% c H (4.8)



[a>]
where Mk = .

k1l k2

while Fk trivially decomposes into

o
Fk = Wk Ck Wk '
o] 1 (o] (o]
where Wk =

Then (see (4.7))

et T o TodT o
RT(E + €2F)R = R'M CMR + €*R W CWR,

where ﬁ = diag {g } ﬁ = diag {
M

Using the result ﬁk = M and putting

01
o1

0l
01

we obtain a new form for (4.12), namely

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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and (4.7) becomes

SE oS == =
Yy (M CM+ e W CW

[ K
1

N
1
Q1

The corresponding MFE equations are (c.f.(3.7))

ING e
1l
hat

(MT CM+er WcC W)

(4.15)

(4.16)

(4.17)

Finally, reverting to the &, § frame, ﬂT c M i becomes

T . -, -
M CMy and ¢? WT C Wy Dbecomes

T
e W CWwW,

sin 6, cos 9, M
3 J,

where W = diag {Wj} . Wj 5 = cos ej

sin 6, cos 0, U
J J

The form of the regularised equations (4.17) then becomes

M cM+e W CWy= g,

or A+ eB)y= g,

where B=W CW (c.f£.[41).

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)



In practice, since the term QT B v has an effect only in the

near parallel case, we can replace the matrix W without loss of

generality by the matrix

* * *
W = diag {wW.} , W,
J J

1
Hy-3
= cos 0,
J
1
LW

which has the same form as the W of (4.19) in the near parallel

limit.

Equation (4.21) can now be written

*
(A+e® B)Y

. * *T *
The matrix B =W CW

where

u
X

*
B.

i %4
/i + u?
X

1

(c.f. the gradient weighted

= g -

is the mass matrix with inner products

B* *
> < - o, >
] ,
J
*
> < g , o, >
J
1
a,
o = — i
i
fﬁ + u?
x

MFE method of Miller [7], who uses

(4.23)

(4.24)

(4.25)

(4.26)
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r

1+ v 1+ v?
X X

instead of ai ’ Bi to generate the unregularised MFE matrix).

The regularisation described in this section contrasts with that
of Miller [8] who in recent work regularises with a term proportional
to
- 9 2 4
(Tk1 Tk2] 5 (4.27)
This leads, by an argument similar to that used earlier in this section,
to a regularisation term which is proportional to the matrix product

(c.f. (4.23))

*m *
W KW (4.28)
2 1 -1
where K = diag {K.} , K =— , (4.29)
k k As -1 1
k
the local stiffness matrix. In this way Miller penalises the relative

velocity (4.27) of nodes at the ends of the element k.
*
Note that the matrix B or B of the regularising term of

(4.21) or (4.23) is an assembly of element mass matrices (contained

in C). As pointed out by Wathen [6], the diagonal of B is
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1y y I
MO Cy M+ et W C,W (4.30)

where CC is the diagonal of C. Moreover, the definiteness

(w.r.t. A) of the gquadratic form

gT [MCM + €W CW - )\(MTCDM + ¢ WTCDW)] ¥ (4.31)
T = 7
=x (C- ACD) x + e z (C- ACD) z (4.32)
where x = Mg, z = Wz , depends only on the definiteness of the matrix
(CRES ACD. Hence preconditioning of the matrix
A+e2B=M CM+e W CW (4.33)

by the inverse of (4.31), a diagonal matrix, clusters the eigenvalues,
in the same way as for A = MT C M (in the non-parallel case).

The argument above can be used to indicate the form of the
regularising parameter ¢€?. As pointed out by Miller [8], Wathen's

result [6] essentially says that the modified Rayleigh Quotient

; T .
g7 (m CM+€2WTCW)1_/
(4.34)
Sm, T :
+2
yo M Cc M+ e W CoW ¥

lies within tight bounds 0% and-% in the one-dimensional case). It

follows that the ill-conditioning inherent in the MFE matrix may

be studied by considering only the gquadratic form
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" - T .
M + €?

(M- C, e W CcyW ¥

Y

or, equivalently,

> r
H
=
a
=1
+
m
N
=1
Q
o
e
1o

(4.16)). But since CD

(c.f.

sum over J of purely nodal contributions

r 1
As o] As o]
-3 j-3%
. (i, - W, o+ W, = W}
=J "J6 J Jj6 J
o] As, 0 As,
j+3 j+3
The matrix of this quadratic form is (see (3.4), (4.14))
N A N As . v, As, .
e R L B H3-1 V3-1 P51 T Han
1
6
2 A + Vi | As
L S s = TN & St o NG e b
Close to parallelism this reduces to
cos § + m, sin 0.)* (As. + As, o)
( ] j °* J) (8554 J+%)
1
6
0 e ( As, + As
j-3

is diagonal this quadratic form is a

I 1o

(4.35)

(4.36)

(4.37)

(4.39)




and the elements of this matrix are of the same order if we choose

g2 = g2

2~ (cos 6. + m, sin 6,)% = sec® 6. (4.40)
J J J J J

This ensures a well-behaved minimisation process.

2 to be variable in this

There is no difficulty in allowing €
approach. Indeed the result (4.40) may be conveniently implemented
by deleting the cos Gj in (4.19) or (4.23) and replacing ¢€* by EZ

(a small constant) in the regularised equations (4.20) or (4.21).

We thus obtain

@+eiE)g=-Mcn+e wewyg=g (4.41)
or
* Ly * *
(A +eB)y= (M CM+e W CW)y=g (4.42)
. il
mj_%
*
with Wj = and fixed EZ (small) . (4.43)
. 1
L "5+

(4.44)

instead of (4.25).
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The above regularisation also copes with the possible singularity

in A when one of the Asj_%, As

j+3 is vanishingly small. If
2

both Asj_% and Asj+% become vanishingly small, however,

A + ¢? B* still becomes singular. Note that in this case the other
term 2 §T § in the norm squared (4.16) also goes to zero and the
problem may be regarded as one of scaling. To some extent the technique
of preconditioning covers this point by automatically scaling the

As's (see [6]).

Another strategy is mentioned in the Conclusion (89).

§5 Other Regularisations

It is undesirable to always force the nodes to have zero velocity
in the event of near-parallelism or small node spacing. For example,
if the nodes are travelling with the appropriate wave speed in a
hyperbolic problem, say, an unnatural stop will damage the solution.

In this section we give two alternative regularisations. The first
penalises the acceleration rather than the velocity, the second
penalises relative velocities rather than absolute velocities but in

a way somewhat different from that of Miller (see §4).
(a) Regularisation by the Tangential Acceleration.
Replace the regularisation term (4.1) by

-1
e | v - v

(5.1)



- 21 -

where Vg—l is the tangential velocity (or an estimate) at the previous
time step. Thus apart from a quantity At (absorbed into €?) the
regularising term is an approximation to the tangential acceleration
immediately prior to the current time. The result of this form of
regularisation is to leave the left hand side of the MFE system (4.17)
unaltered but to add terms to the right hand side which ensure that

in the event of singularity nodes move with a tangential velocity similar

to that at the previous time step.

Taking
: . T, .
T T ] J j (5.2)

- —-%
the right hand side vector g in (4.20) now becomes g

where

Q
=1
LS
n

(o, T 1))

while g in (4.21) is replaced by

4%
g =g +¢? WT CWy (5.3)

This is a reasonable regularisation if nodes are not attempting to

change speed along the tangent.

(b) Even the regularisation in (a) is not sufficiently general
to cover all important situations, and in many ways the approach of

Miller, as described in §4, in regularising with a term proportional
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to (4.7) is desirable, since nodes will then tend to travel with the
speed of their neighbours. The disadvantage of this approach is the
appearance of the matrix K in (4.28) which allows the eigenvalue
spectrum implicit in (4.34) to escape from the bounds (%y %0 inherent
in (4.20) (4.23) (in fact as far as (0,2), see Wathen [6]).

There is however another possible approach to penalising the
relative speed of neighbouring nodes, which is to add a regularising
term

|2

g? || §? Vo

2 - — s 0
where § VT (VT). 2(VT)j + (VT)j_ and VT is given by (4.2).

j+1 1
As a result (4.16) becomes
e+ ANWCUMNY-2Yg
00 00 00
01 0-2 01
where A=

00 c O 00

01 0-2 01

with the corresponding form in the &, § system

§T (MTCM+52G5FATTT\1TCVVA@)1Z—2§/TQ

(5.4)

(5.5)

(5.6)

(5.7)
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cos 6, - sin 0,
J J
where ) = diag {@j} . @j = . (5.8)

sin 0, cos 0,
J J

With this form of regularisation we preserve the result that the

modified Rayleigh Quotient

9T e + 2 & ATW oW A@) ¥

(5.9)

' (MTCDM+ e &F ATYTVTCDW A) g

lies within the tight bounds given after (4.34), but unfortunately

since the matrix A is block tridiagonal, rather than diagonal, the
matrix of the denominator of (5.9) is no longer the block diagonal
submatrix of the matrix of the numerator and is harder to invert. Thus

the evaluation of the preconditioner itself becomes a problem.

86 Two Dimensions

We now generalise the preceding theory to higher dimensions,
illustrating the ideas throughout in the two-dimensional case.
Section 2 holds verbatim with the following changes only. In

(2.3) we now have

v=)a.a, v, = J(&, o, + %, B, + V. V. (6.1)
j j

(see fig. 4 and refs. [1], [4]), and in each (triangular) element we
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now write

3
Ue T % @y bpg =My Fpg Oy 70y Vi )

where the suffix i runs over the element vertices. The quadratic

form to be minimised is again (2.5) with

2nm nn' nm 1
1 T T T :
E, = &4 | mm 2o m mm r = m| o
T T T
nm nn 2mm -y

Ak being the area of element k, and

t 5
G, = 1<t LM>, m <P ., LOV)> —n <., L(VM>)1=1,2,3

Minimisation over éki' éki leads to (2.9) as before.

Minimising now the total L2 norm squared (2.8), subject to

the constraints

a. ='a. X, = X, 7 = v,
ju 3% T3 321 Y5u Y50

where U, refer to elements around the node j , we reduce the

number of unknowns by roughly one sixth. Write

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)
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a. 1
Ju
X . a,
Ju J
7 . = R, X, (6.7)
yJU J J
- yj
Vu
100
T
where Rj = [I,, Ty swwr 131, I = 010 |. (6.8)
001
~T -T
With ?T = {...,48,, X,y V.4 «e-r and Y = {v.} we have
= s R R J
Y = Ry (6.9)
as before, (2.12), where R now contains elements I, in appropriate
positions (but not in blocks since the numbering on the left hand
side of (6.7) is elementwise). However there exists a permutation
matrix Q such that QTRQ is in block form
) T
T 3
Q'RQ = (I, I, ... I,] (6.10)
With these definitions we obtain (2.14) and (2.15), as before.
Furthermore, there exists a decomposition of E (2.20) as before,

k
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where
1 —mk —nk 0 0 0 0 0 0
Mk = 0 0 0 1 —mk —nk 0 0 0 ' (6.11)
0 0 0 0 0 0 1 —mk —nk

which leads to the five matrix decomposition (2.23).
Note that M = MR is now a rectangular matrix with no simple
block structure, although there exist permutation matrices Ql' er

Q3 such that

T Y (o5 T

does have block (rectangular) diagonal structure.
These results extend to higher dimensions.
Turning now to the need for regularisation (§3) we make a

transformation from &, %X, y coordinates to N, T, § coordinates

A

as follows. Let Ejk and Ej be unit vectors in the tangent plane

to the solution at the point j which lie in the éj, éj and

ﬁj’ éj planes, respectively.

We may write

~

t. = (cos 6., 0, sin 6,) , s. = (0, cos 6., sin 6.) (6.13)
J J J —J J J
(see fig. 5). The unit normal to the tangent plane is
n, =%t. x §, = (-sinb. cos ¢., - cos 6, sin ¢., cos 6., cos ¢.). 6.14
= =37 =3 3 b 3 ? i’ ¢J) ( ‘
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Then, if N., T., §. are the components of (a,, x,, y.) in the
J J J J J J

directions nj, t., s..

4. =N. cos 6, cos ¢, + T, sin 6, + §, sin ¢.
J J J J J J J J
X, =T, cos 0, - N, sin 8, cos ¢. (6.15)
J J J J J J [
7. =8, cos 8, - N, cos 6, sin ¢,
y] J J J J J
Thus
u, =) (. a, +%, 8, v, =) (N, a, +T. B. +S, v.) (6.16)
t z 3 J 3 YJ Z J 3 J 3 J YJ
J J
where
]
&. = o, cosf cos - B. sin © cos - v, cos O sin
3 j ¢ BJ ¢ Y5 ¢
B. =0, sin 0 + B, cos B (6.17)
J ] ] r
Y. = o, cos + . cos ©
YJ J ¢ YJ ]
In the element k the contribution to ut is
3 .
. q ) .
DGy N by + v Tooyy + % 8 6y ) (618

i=1

where
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=
Il

Ki cos eki cos ¢ki (1 + mk tan eki + nk tan ¢ki)

vki = sin eki (tan eki - mk) ) (6.19)

Qki = sin ¢ki (tan ¢ki nk)

Then the contribution to the corresponding quadratic form from the

element is (3.9) with

-7 . . .
o= ) Negr Tyyr Spy (6.20)
i=1,2,3
L
2mm m mm
= ! = =i - =T - -T -
E, =pp e |mm  2mm mw |, mo= [y VY] (6.21)
- =T ~ =T - T
m m mm- 2mm

and éi is (3.11) extended from u,v to U, v,w with basis functions

¢ki (i ='1,2,3).

T
Parallelism occurs when the rank of m m is reduced below 3,
in which case the coefficient of a tangential velocity component

vanishes.

As in 84, 85, we regularise the norm squared of the residual

by adding terms

2 n-12, 2 n-1 2
ep lvgvg 1% el vevg | (6.22)
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where

n-1 . .n-1 n-1 5, .n-1
V-V = T.-T. o . vV =V = S.-S. o, 6.23
= §(33>J, o= Vg §< o ( )

which ensures that near to parallelism the node Jj is moved with (an

n—-1 n—-1

estimate of) the tangential speeds . VT : VS at the previous time
step. As a result (4.3) becomes (when €p = eS)
r - e le - n-1
Xk Ek Zk ZZk gk + € Zk Fk (Zk Zk ) (6.24)
where
2ee’ ee ee’ 2
row Lo e e’ 2ee’ eet |, e = |1 (6.25)
k 12 k o T o B
ee ee 2ee’ 1

This leads to the global form (after the imposition of constraints)

Q? (RTER + ezRTFR)'g_— 2§T (é - éﬁ_l) (6.26)
(c.f. (4.5)), where E = diag {Ek} , F = diag {Fk} . é?_l = eR'FR gn_l,
or

g? R (E + ezF)R§ - 2§ (g - éé—l) (6.27)

Following through the arguments of §4, §5, leads to



=T =T - =T = = = -n-1
yT (MTch + e*Wew) ¥y - 2y (g-g ) (6.28)
where é?_l = EZWTCﬁ i?_l , W= % R (6.29)

=
11
(@]
o
o
o
-
[
(@]
(@]
(@]

and W = diag {ﬁ%} , VY (6.30)

and, reverting back to &, %, y coordinates we obtain the regularised

MFE equations (with the €'s absorbed into the W)

T T . <N—
(M'CM + e?W CW)y = g + eszchn B (6.31)
Here W=WP where P = diag {Pj} ; (6.32)
=1 .
i i cosf .cosd, sind.cos®¢, cos® 0, .sing.
cose_cos¢j 51n6j s1n¢j 5 ¢j j ¢J j ¢j
3 = |-—si 0 = |sin® .cos¢. cosd.—cosb, sin® ,sin¢,
B, sinf .cos$. cosb, : ¢J 3 3 3 ¢]
- i 0 cosf .sin¢. -sinb.cos¢, sind.cosé.
cosej51n¢j c05¢j‘ ‘ 3 ¢J 3 ¢3 ¢J j
298 cos? ¢ .+sin? B cos® ¢ .+cos® B, sin’¢.)
(cos J ¢3 J ¢J ] J
(6.33)
or (MCM + € PWCWP) =g+ € PTWC WP gé'l. (6.34)

It remains to discuss the form of €. As in §4 we may argue

that the conditioning of the quadratic form
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T

v (M'cM + €2 Wiew) pd

is essentially that of

T

B T T .
+ 2w
y (M CDM e* W CDW) Y

=T
or M

where CD is the diagonal of C.

matrix of

2
z Ak M z Ak Hv
4 ) )%
z Ak vu 2 Ak v o+ € ZAk
) o, ou Lo v

In the case of parallelism the rank of E.E?

Again, as in

_T ju— _T =
M + €2
( CDM e*W CDW) Yy

Then using nodewise numbering, the

(6.36b) is block diagonal with (nodal) blocks

) b P
) A Vg

. e
Lo, 9t +e ZAk

is less than 3.

§4, to keep good conditioning we choose (c.f. (4.38))

€2 = g2 ~2 = cos?’f.cos*¢, (1+m, tanb. + n.tan¢.)?
-] J J J J J J

J

= sec?6 sec’¢, (cos®O.cos’¢. + sin®*0 . cos’® ¢, + cos? 0 ,sin%*¢.)?
J J J J J J J J

With this form of €2

by g2 (small) and Pj

o}
cosb ,cosd, sinf ,cos? ¢, cos®B . sing,
J J J J J J
P, = tanb .cos¢, -s5inb sin¢
J J J J J
cogb .tang, -sinf . sin¢, 1
J J J J

we can rewrite (6.34) with €

2 replaced

replaced by

(6.35)

(6.36a)

(6.36Db)

(6.37)

(6.38)

(6.39)
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In one dimension W picks out the

it will pick out the T and §

WP (in the nodal numbering) to take the form
tanejzcos¢jz 1 —Slnej281n¢j2
(WP), =W, = cosO, tand,  -sinb, singd, 1
J J J& ¢32 j% ¢J£
mjlcos¢j£ 1 —51n6j251n¢j2
= n,,cos¢. -sinf ., sind, 1
SRS ¢32 3% J
where & runs round the elementsadjacent to node j.

A simpler strategy, based on an analogy with the one-dimensional

: . T
case, is to split the term €* W C W

2 _T
1 WT C WT and £
mjl 1 0
where (WT)j = 0 0 0

again using the nodal numbering.

T and S terms, respectively.

v

The two terms (6.42) regularise the

components of P.

component of P

here

Hence we expect

in (6.31) into two terms

v

(6.40)

(6.41)

(6.42)

(6.43)
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With this approach we arrive at the regularised MFE equations
(c.f. (4.24), (4.25), (5.3)).
* * * - * =
(A +€’B +€¢’B)y=g+ e? B ?n ! + e’ B ?n L
11 2N = 1 171 2 272
< > < > < >
0 Oy a Bj 50 Yy
where A contains inner products <B,, a.> <B,, B.> <B,, v.>
1 J i J i J
= > < > < >
Yi’ OLj Yi! Bj Yil Yj
™ =l
<-— -B.> <= >
By Bj B0y 0
*
B contains inner products <a., -B.> < a,,u.> 0
1 i 3 R
0 0 0
=YY 0 =Y., 0L
1 J 1 J
*
B contains inner products 0 0 0
2
< -y . > < >
ui, Yj 0 ai ; aj

in which various orthogonality properties are obvious. When A becomes

*
singular as a result of loss of rank, the addition of e?B or
11
*
’B
2 12

the right hand side of

£ or both will restore the rank. As in §5 the presence of

2

(6.44) ensures that dominance of the £

. .n-1
terms force the tangential velocity to be the same as its value Y

(or an estimate) at the previous time step. Typically we might expect

to choose €2 and e? to be on the level of a tolerance, perhaps
1 2

close to truncation error.

Although this simpler strategy relies on regularisation of the

(6.44)

(6.45)

(6.46)

(6.47)
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matrix system by adding orthogonal matrices rather than on penalising
the residual norm, it has the required effect and is equivalent to

the penalty approach in one dimension.

§7 Scaling and Local Variants

One result of the regularisation above (seen most clearly in

one dimension) is the presence of terms such as

My and Wy (7.1)

in the same equation. The first of these leads to expressions of the

type

a - ms (7.2)

the terms of which are one-dimensionally consistent, but the second

gives

ma + §, (7.3)

which are not dimensionally consistent.

One way of clearing up this difficulty is to work with the variables
& and m& rather than & and &, where m is (for example) an average
slope at the node. We must then redefine 8 as - mo/m (and Y
similarly). Singularity and regularisation occur as before, but (7.2)

and (7.3) now become
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i - T (md)
m
(7.4)
= A+ (md)
m

Dimensional consistency is restored and.the only additional task is

).

to calculate & from (m&). (We can take m = %(lmj ll + lmj+%
=2

The elementwise construction of Miller & Carlson in §2 is affected
by this procedure because m is an average over all elements adjacent
to a node (although it appears that this may be postponed to the assembly
stage). All matrices must be recalculated using the new B's and
v's and the rotation of §3 now becomes one of 450. Apart from these
differences, the essential results are unchanged.

Turning now to a variant of the method (the local method) we

first write the equation

@ + sjs)g = (e + eiWTcwn_'z =g+ €§WTCW§Zu_1 (7.5)
as two steps. In the first step we minimise
| v - e | (7.6)

over v's of the form

as in [4]. This leads to the equation

Cw=>D) (7.7)
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= = = < >
where w {wkv} and b {bkv}' b, ¢kv’£(v) and we note that

MTQ = g. No regularisation is needed in this step.

In the second step, standard MFE minimises
3 e
| c* g -w |

over y to yield the equation MTCMQ =Mw-=g. In the

form we minimise

1 1 =
It g -w 2+ e2let wog -3 R E

to yield (7.5).

regularised

The local form arises from replacing C in (7.9) by A, where

A = diag {Ak} and Ak is the size of the element k. The method

may be viewed as arising from a Petrov-Galerkin approach [9] or

minimisation in an alternative norm [7]. The minimisation (7.9) then

becomes

ot g - e+ 2] 2w - I
to yield

T T, . .
(M~ AM + eiw My = g- + EE WAW ¥

where g = M AW

(7.8)

(7.9)

(7.10)

(7.11)
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and, by the nature of the left hand side matrix (proportional to the

MTCDM + ei WTCDW of (4.34)) we have a local nodewise method

(ME A M. + e2Wr AW.)Y, = g° + e2We A, W
I =3 o3 3 3F3 23 03 3

V. where A, = diagl[A,
J J J

17
-2

singularity.

We conclude with the local MEM form (see Edwards [10]), which
can be constructed in the same way as the local form above with Mj

replaced by [—mj_% -m, ,] and y. replaced by éj, the nodal

J+3 J

speed. A singularity occurs when m, = m, =
H 2 2 j-% j+i

Wj may be chosen to be an arbitrary non-zero vector, say [l - 1]. Since

the resulting form of (7.12) is scalar, both W? and Wj

absorbed into the si, leading to the form

=m

j-%

-

j+d

L 2 n
C+ e (A, + A, S,
95 o( V1o J+%} J

or

Z%+L], regularised to avoid the parallelism
2

0, and in this case

may be

(7.12)

(7.13)

(7.14)
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where

L
. = [-m, -m, Aw = = (m, A, W, + m, A, W, 7.15
93 7 [myy TRyl 0w My B53 Yy j43 Byey Myep) ( :
(c.f. [10]1, [11]).
From the form of (7.14) we see that if mj . = mj+l =0
-z i
the value of éj remains determinate equal to an estimate of its value
at the previous time step.
§8 Conclusions.
The main conclusion of this report is that simple regularisations
of the MFE method exist which preserve the fast solution techniques
associated with the explicit approach.
In summary the MFE eqguations
Ay = g (8.1)
may be replaced (in one dimension) by the equations
.n-1
3" (8.2)

where 2?_1 is an estimate of y at the previous time step.

Inversion of the l.h.s. matrix may be carried out easily using the

preconditioned conjugate gradient method, as for A above: (see below).
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In the global form, if A consists of blocks

<0, , O.> <., B.>
1 J 1 J
(8.3)
<Bi, aj> <Bi, Bj>
then B consists of blocks
<=B., -B.> <~
R S
(8.4)
<\qi; hﬁj) (*q-i-r aj>- A
A similar regularisation in two dimensions leads to
2 2 . 2 =1 2 =1
(A +eB+e“"B)y=g+¢e" By + e° By (8.5)
11 2 gE & T

e 2 2=

where the suffices i and 2 refer to x and y compenent terms.
For B and B see equations (6.46) and (6.47).
0 1

Another useful result is that the B of (8.2) has the decomposition

B=W CW, . (8.6)

See (4.42), which contrasts with the Miller regularisation which takes

the form

W KW, (8.7)
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(see (4.28)). As a result the MFE matrix, when preconditioned by
the inverse of its diagonal (in blocks), has eigenvalues located in
a small finite interval of the real axis bounded below by % , whereas
the Miller regularisation permits the corresponding eigenvalues to
occur close to the origin.

The only respect in which (8.2) (or (8.5)) may lead to an ill-
conditioned system is if all the elements surrounding a node become
vanishingly small. A strategy for overcoming even this case is as

follows. Let

= —_ 8
C {ck} r Oy A, T (8.8)
where A is the size of the element k and T = {T ..}, T .. =
k k kij kij
8
Then
A+ e?B = MM+ eEWTCW (8.10)
= MT AToAM + EEWT 2T Aw (8.11)
where T = diag {Tk} and A = diag {Ak} . Now let
A = diag {max ( A, A )} (8.12)
§ k 0

where A is some small element size, and define
0
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1 1
A= MT(AT)ZT A%M i A = MT(AT) %T A M
§ § §
[
1 1 1 1
B = WT(AT)ZT AW ; By = WT(Ag)ZT Ag W

We now solve the (always) well-conditioned system

2 . 2 .n-1
[A+A6+€0 (B + Byl =g + [A; +€0(B+B6)]1_/ '

constructed on the same principle as in §4.

The corresponding local method comes out of the decomposed form

(c.f. (7.10))

T T 2 T .
[MCM + MC M+ z—:j(W CW + We Wl ¥

=g+ [MTCGM + ei(chw + WTCG.W)] gn_l
where C = diag {Ck} r € = AT, . We replace C and Cg by A
and A6 throughout, giving
(M AM + MTA(SM + €§ (W AW + WTCGW)] v
=g+ [MTA6M + ei(WTAW + WTASW)] Fal ,

all matrices being diagonal in 2 x 2 blocks, so a local method.
Finally the local MEM form is obtained by replacing Mg by

[Fm, , - m, ,] andy, by éj , giving eventually
1 Y

(8.13)

(8.14)

(8.15)

(8 .16)
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+ {g? + AS
9 {EO(ASj_% A

0 0

T 48y, + Aso) + AS (mg_% + p?

(Asj_%

+ A ) + €2) + (A ] + A i + g?
So)(mj—% EO) ( SJ+% So)(mj+% eo)

c.f. (7.13). In this method the eigenvalue structure is preserved.

We end the discussion with a remark about ié_l.

In view of

possible irregularities in individual adjacent velocities, it seems

. 5 .n-1 :
advisable to average them in some way to obtain ZP . A possible

formula is

w +w +w
o]

where w 17 Wo' w, are weights. An obvious choice is

w1 = 1, but we may also weight by length in the manner
w_, = Asj+% . wo =0, w1 = ASJ_%.

This weighting has the advantage that when one +As spacing becomes

very small, the velocity g? approximates the y on the same side.

3
. . .n-1
This applies equally to sj =

(8.17)

(8.18)

(8.19)
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Appendix A.

Although regularisation of the tangential wvelocity is exactly what
is needed theoretically (see also Appendix B), the main practical
difficulty in the use of MFE is the problem of elevent folding and this
may be attacked directly by regularising with the (horizontal) nodal

velocity rather than the tangential velocity. Instead of (4.1) we have

g2 , 52=75, a

| 3%

£

and we then obtain (4.20) with

1
W = diag {Wj}, Wj = 1l
or (4.21) with
0O O
B = diag {B.}, B, = .
J J o 1

In two dimensions the corresponding regularisation is

€2
0

|2+ e |

+e? | 9% |

where X = zkjuj v = )y.0.

and then we obtain (6.31), (6.44) (with just g on the r.h.s.),with

=
Il

diag {le}

=
I

diag {w,.}
23

o]
I

diag {Blj} i B diag {sz}

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)



- a2 -

010 000 000 000

= 1 = 1 B . = = A.7

w1j o1 o , Blj o1 o0 i 23 0oo| , sz 000 ( )
000 000 001 001

In effect we have set B and Yy equal to O in these matrices,
consistent with the tangent to the solution being horizontal. Extra
r.h.s. terms may be added as in (5.3) and (6.44).

The local form of these equations is (7.11) with W replaced by
Wj (see (A.2)) in one dimension and by le or W2j' (see (A.7) in
two dimensions. We repeat these forms below for convenience. 1In

one dimension the MFE eguations are

L 2 L. . L 2 _L.n-1
(A, + €" B,) y. =g, + €7 B.y, (A.8)
J J XJ g] 0 JgJ
A = ML AM
J J 33
where (A.9)
B = WY AW
J J J 3

and W, 4is as in (A.2). A corresponding two-dimensional form is

n-1 2. I, .n—-1

L 2 L 2. L .. L 2. L .
(A, + €°B, . + €“B..)y. = g. + €°B, .v. + €“B_. v. (a.10)
b 113 2 27 zj gj 1 1J¥J 2 2JZJ
where
i T i T L T
A, = M,AM, B,. = W.AW,_, B.. = W..,AW_, (a.11)
J 33" 13 @b 7l ® 2] 2373723

and W, ., W

15 23 are as in (A.7). Equation (A.8) is a 2 x 2 system and

(A.10) is a 3 x 3 system.
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These regularisation terms are the same as in the local MEM approach
(7.14). 1In relation to the minimisation structure given in §7, every
statement there is correct provided that W is redefined as in (A.2).

We can also add A, and B, matrices as in §B to overcome the

$ S

problem of simultaneocus folding.
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Appendix B
In this appendix we look particularly at the local MFE method and
devise a geometrical construction for a family of moving element schemes

which are all conservative.

Leaving aside regularisation and returning to the theme of §3 we

write the local MFE method in the form
T
MMMy = g = M Aw (B.1)

(see (7.7) and (7.11) with Eo = 0). The first equation of each pair of

equations of (B.l1) comprises the system

LTy = nhaw (B.2)

where I consists of rows of O's and 1's.

Let C = TA where T is the purely numerical matrix diag{Tj},

2 1 2 1 1]
4 (in one .
1 1 (in two
T - — 3 1 s = — -
j 3 dimension) Tj 13 1 2 1 dimensions) (B.3)
1 2 1 1 2

Note that the rows of L are eigenvectors of T with common eigenvalue

(N = 1,2 being the number of dimensions).

2 e

Multiplying (B.2) by T gives

T .
L CMy = LTQE (B.4)
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which corresponds to the equation obtained by minimising (2.2) over the
G,

of (2.3), namely

<ocj,vt - L(v)>=0

(B.5)

Since the «a,

are a partition of unity, summation of the equations (B.5)
gives

J([vt - L(v)1aQ = O

(B.0)
which shows that any scheme which includes (B.5) is conservative.
Now (B.4) or (B.2) is a rectangular system and the matrix
T
L AM possesses a null space. At the node j in one dimension we have
@Tam) , = [4s, , + As ~m, , As. , - m., As, ] (B.7)
. 5-3 T %5541 5=3 553-3 7 Tye OSyepe '
whose null space is clearly spanned by
i m, ,As + m, As, Aa, + Aa,
y=4 =% j+y T+ j-% j+i
Yoy = (B.8)
As + As As | As,
j-% j+i j=% + T 3+d
So
tTamy = o (B.9)
ZOj °

and the direction of go

3 is along the line Jjoining the nodes j-1
and j + 1 (see fig.5).
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Suppose that ij is the sclution of (B.1). Then

éj = zj + kjioj (B.10)
is a solution of (B.2), by wvirtue of (B.9). By (B.6) this solution is
conservative for any kj. Moreover there is a geometric construction
for gj which is also shown in fig. 5. The vectors éj are obtained
by drawing a line (in one dimension) through the end of the gj vector
parallel to the line joining nodes 3j-1 and j+l.
Where this line intersects the vertical line x = sj there must
be the conservative method on a fixed grid (the local fixed finite
element approximation). In this case
(Aaj_% + Aaj+%J
ky = _éj/(Asj—é i 8 +%) g (éj)fixed - [éj)moving N s.:'j
(Asj_% + Asj+%)
(B.11)
but for any value of kj a conservative method is obtained (in a semi-
discrete sense).
It is easy to see how overshcots occur with the fixed method. In
fig. 6 which shows data convected by the scalar wave equation
u, + aux =0 a>o (B.12)
the construction of (zj)fixed uses (§_'zj)moving and the "tangent” to

v at the point j (being in fact the chord joining j-1 to J+1).

The result is a clear overshoot.
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The connection of this section with the need for tangential
regularisation in §3 is clear. If the B equation does not lead to

singularity then is the undisputed solution. But where

Ivrg
singularity arises there is reason to select a special nodal speed which
should be one of the conservative choices above.

All the regularisations mentioned in this report fall into the

framework described here.
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