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Abstract

Classically triangular grid generation for numerical problems has
largely been performed using the Delaunay criterion due to its min-max
angle property which leads to well conditioned stiffness matrices in the
finite element method. With the advent, however, of adaptive finite
elements the emphasis has shifted to the generation of triangular grids
which well represent initial data when this is interpolated upon them.
To do this data-dependent mesh generating criteria have had to be devised.
In this report we survey some such data-dependent criteria of Dyn, Rippa &
Levin, contrasting them with another criteria based on equidistribution.
Throughout we assume that a fixed set of nodes have been given on which to

base the triangulation for the region.



1. INTRODUCTION

Classically, triangulations such as Delaunay [2] generate grids which
produce well conditioned stiffness matrices when used with finite element
methods, due to their max-min angle property, (Sibson [9]).

However, for many applications, for example producing initial grids
for Moving Finite Elements [7] which moves the grid according to the data,
the overriding consideration is accuracy of the data representation on the
grid. This is not usually produced by the non-data dependent Delaunay
triangulation [2] and so other criteria must be used. Dyn, Rippa and
Levin [3] surveyed a number of criteria for generating a triangular grid
from a given set of nodes to well represent a given underlying data
function. Other techniques have also been employed, e.g. Sweby [10], who
uses an approximate equidistribution technique based on the work of Carey
& Dinh [1].

In this report we survey and compare these criteria as a first step
towards producing a truly data dependent grid generation technique. Here
we connect given nodes to produce triangular grids, while future work will
involve adjusting nodal positions while keeping a fixed connectivity and
eventually the two will be combined to produce a truly data dependent grid
generation technique.

In Section 2 we outline the notation which will be used in the
report, in Section 3 the concept of a data dependent triangulation is
discussed, while the criteria based on such a concept are outlined in
Section 4. In Section 5 we outline the procedures used in producing a
data dependent triangulation. In Section 6 an outline is given of the
testing procedure, the test functions and the data sets, while in Section
7 numerical and graphical results are produced. Finally a summary of the
results and conclusions which can be drawn from them are presented in

Section 8.



2.  NOTATION

Before we consider the various criteria which we are investigating,
we establish first the notation which will be used in the rest of the

report.

Referring, where applicable to figure 1 we denote (following Dyn,
Rippa & Levin [3]):

N is the number of data points, in the region , and NB is the number

of points on the convex hull, QB, of the region to be triangulated.
V 1is the set of data points, v, = (xi, yi). i =1..N.

F is the Data Set. Fi = f(xi, yi) at each data point where f 1is the

actual function being worked on.

ot
I

2(N-1) - NB is the number of triangles, Ti’ in a triangulation.

o
]

3(N-1) - NB is the number of edges in a triangulation.

The triangulation, T, 1is the union of all triangles, so
t
T = U T, , T.NT, = {¢} . 1 # ]

fT is the interpolating polynomial to the data on the triangulation, with

t
f.= U f
T -1

3 i
i

Il
—
ot

f, = a,x + biy +cy [(x,y) € Ti] i

where fi is the local interpolating polynomial on triangle Ti'

W is the array of the augmented set of data points.



-3 -

” z " is the Euclidean Norm of z, 1i.e.
J 2 2 2 N
” z “ = z1 + 22 + ... 0+ zm where z 1is an m-vector.

Since we shall be comparing different triangulations we need a
notation to convey this. We denote that a triangulation T' is preferred

to T in the sense of some cost function value (see below) by T' < T.

SR

(i) convex hull of points (1i) triangulation of points

Figures 1

The sense in which we judge triangulations is as follows, referring

where necessary to figure 2

Figure 2. Two adjacent triangles.

——
Let e =v.,v,
1)

and T2 be the two triangles sharing the common edge., e.

be an internal edge of a triangulation T and let T
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Suppose that f1 = Pl(x,y) =a;x + bly + ¢y (x.y) € T1
fz = P2(X,y) = a2x + b2y + 02 (X,y) € T2
are the linear interpolating polynomials on triangles T1 and T2

respectively.

For each interior edge e of the triangulation T, a real cost
function s = s(fT, e) 1is assigned.

Let N and N' be real vectors of size q, with the elements
ordered in a non-increasing manner. We can define ordering schemes on R?
to say that N < N' means that the triangulation T that produced N is
better than the triangulation T' which produced N', or T < T'.

The ordering schemes are:

1) ordering by the L1 norm

q
Ry(N) = = |Ni|
i=1
and N' < N if Rl(N') < RI(N)
2) ordering by the L2 norm
q . %
Ry(N) = |2 |Ni|
i=1

and N' ¢ N if R2(N') < R2(N)
3) ordering lexicographically

N ( N' if the vector N 1is lexicographically not greater than N'

i.e. compare element by element in order 1, 2, ... q.
if N1 < Ni then N < N'
if N1 > Ni then N > N’
otherwise check N2, N2, N3, N3, e Nq, Nq,
if Ni = Ni. i=1, ..., q then N =N’

Thus we now have methods of determining an ordering for a set of vectors.
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In the next section we look at the concept of data dependent
triangulations, and how we can define an optimal triangulation for a given

criteria now that an ordering of triangulations is possible.

3.  DATA DEPENDENT TRIANGULATIONS

In this section we define what is meant by an optimal data dependent
triangulation and describe the procedure which was used in our attempts to
produce such a triangulation.

We use triangulation criteria to order several triangulations thus
enabling us to choose a preferred triangulation. We begin, following Dyn,

Rippa and Levin {3], by defining what we mean by an optimal triangulation.

Definition 3.1

An optimal triangulation of a region ), given a fixed set of nodes,

%
with respect to a given criterion is the triangulation T such that

for every triangulation T of Q.

For this definition it can be seen that the optimal triangulation
with respect to a criteria need not be unique.

An optimal triangulation of (1 always exists since there are a
finite number of triangulations of 1. However, it may be difficult to
obtain this optimal triangulation in practice, and we may find ourselves
in the situation of a local minimum of the cost function associated with
the criterion.

Let T be a triangulation, e an internal edge of T and Q a

quadrilateral formed by the two triangles having e as a common edge.



-6 -

If Q 1is strictly convex then there are two possible ways of

triangulating Q (see figure 3).

Figure 3. The two possible triangulations of a convex quadrilateral.

Definition 3.2.
An edge e 1is called locally optimal if T { T' where T' is

obtained from T by replacing e by the other diagonal of Q.

Definition 3.3.

A locally optimal triangulation of Q 1is a triangulation T' in

which all edges are locally optimal.

A data dependent triangulation, of a fixed set V, depends on the

data vector F and so the preferred triangulation is not the same for all

data vectors.

The optimization procedure used to construct the triangulations is

based on the Local Optimization Procedure (LOP) suggested by Lawson [6],

which can be written as follows:-

(1) Construct an initial triangulation T(o) of 2 and set T «-T(O).

(2) If T 1is locally optimal - end the procedure, else go to step 3.

(3) Let e be an internal edge of T which is not locally optimal and
let Q be the strict convex quadrilateral formed by the two

triangles having common edge e.
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(2) Swap diagonals of Q, replace e by the other diagonal of
Q. therefore transforming T to T'.

(b) Set T «T' and go to step 2.

This means that after every edge swap occurs, the resulting
triangulation is strictly lower in the ordering than the previous one.
Since the number of triangulations is finite then the LOP converges after
a finite number of edge swaps to a locally optimal triangulation.

In the next section we shall describe the various data dependent

criteria, the results of which we shall later compare.

4. CRITERTA FOR PRODUCING TRIANGULATIONS

The criteria are taken in a systematic order. First we look at the
most common non-data dependent criteria which are Delaunay and Minimum
Weight, and then we look at data-dependent extensions of these criteria.
We then look at the data dependent criteria categories, nearly C' (NC1)
and near planar, from Dyn, Rippa & Levin [3]. Finally we look at a

criteria based on approximate equidistribution, (Sweby [10]).

(a) Non-Dependent Criteria

(1) Delaunay Triangulation

Delaunay [2] is the most common triangulation technique used since it
produces "good", regular, almost equiangular grids which posess favourable
properties when used with the Finite Element Method. The Delaunay
Criteria seeks to maximise the minimum angle in the triangulation, and it
has been shown that an equivalent property is that the circumcircle of

each triangular element contains no nodes in its interior, (Sibson [9]).

This is demonstrated in Figure 4.



Figure 4. Example of Delaunay and non-Delaunay triangulation.

Delaunay triangulation can be achieved using either an insertion
polygon or a diagonal swapping process. Each process is started by the
introduction of 3 or more artificial nodes which are positioned well away

from the convex hull QB of the points to be triangulated (see Figure 5).

Ay Ay

A Aa

Figure 5. Al' A2, A3. A4 are artificial nodes.

The artificial nodes are triangulated and then the nodes of V are
introduced one by one. As each node is inserted the grid is
retriangulated. In the insertion polygon scheme, if the new node lies
inside an element circumcircle (i.e. the circle passing through its
vertices), then the element is removed. When all such elements have been
removed we are left with a polygon, the insertion polygon. The new node
is then connected to all points on the boundary of this insertion polygon

to give the new triangulation (Mock [8], Hunt [5]).
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Figure 6. Node insertion by the insertion polygon method.

In the diagonal swapping procedure, the inserted node is connected to
the vertices of the element it is inside and then pairs of elements
forming quadrilaterals are checked using a criteria and if necessary the
internal diagonal is swapped. In Delaunay the criteria is maximising the
minimum angle in the pair of triangles. When all the nodes have been
inserted using either method then any triangles which include artificial
nodes are deleted, and the resulting triangulation is Delaunay.

It should be noted that Delaunay does have a degenerate case when two
(or more) elements have the same circumcircle, in this case either
triangulation is Delaunay, the triangulation is not unique, (see Figure

7)., and we are free to choose either diagonal.

Figure 7. Degenerate case of Delaunay.
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Delaunay is used with the Finite Element Method, since the

equiangular property produces well-conditioned stiffness matrices (Hunt
[51).

An alternative non data dependent triangulation is

(2) Minimum Weight Triangulation (MWT)

This triangulation seeks to minimise the total length of all the

edges in the triangulation, (Watson [11])

[
i.e. Min E ” e, " = Min z z J(xi - xJ.)2 + (yi -v.)?
i=1

j
TLET €T

This has the advantage of being useful for interpolation on the triangles
as the nearest neighbours of a point are connected to it. However, it

does not have any properties like the equiangular property of Delaunay.

(b) Data Dependent Extensions of the Previous Criteria

(3) The MAX-MIN Angle Criterion

This criterion is a data dependent extension of the Delaunay
triangulation. Rather then trying to maximise the minimum angle in a set
of triangles with vertices given by V, we try to maximise the minimum
3-D angle in a set of triangles with vertices given by W.

This is helped by remembering that

(W =W W, - W)

LA LA

cos (Lijk)

This criteria does not work well at all.
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Delaunay can be thought of as the max-min protected angle of W onto V.

(4) MWT - 3D
This is the Data Dependent extension of the MWT where we seek to
minimise the sum of the 3-D lengths of the edges of all the triangles,

with vertices given by W, is a triangulation

: 5 _ 2 _ 2 _ 2
i.e. Min b > J(xi xj) + (yi yj) + (Fi Fj) .

Hence MWT works on a protection of W onto V.

(c) Nearly C' Data Dependent Criteria
The following criteria are based on the premise that if the surface
produced by the interpolating function is as smooth as possible then the

errors in interpolating the underlying function will be reduced.

(5) Angle Between Normals (ABN})

The Angle between Normals cost function seeks to measure the angle
between the normals to the planes, produced by the piecewise linear
interpolant in R®.

Let 2(1) and 2(2) be the normal vectors to the two planes P

1

and P2 respectively which meet at an edge i.e.

. 1
(1) 1 b i 1,2 .

n = i
Ja? +b% + 1 -1
1 1
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The cost function is the acute angle 6 between these two vectors, i

1.€x
-1
s(fT. e) = 8 = cos A.
a,a, + b1b2 + 1
A =
2 2 2 2
Jal + b1 + 1, la2 + b2 + 1
i.e.
P
Figure 8. Angle 6 as found for criteria ABN.
This criterion is the most intuitively satisfying as it should

provide smoothness even near edges of the domain (. Another criteria

based on the concept of underlying smoothness is:
(6) Jump in Normal Derivatives

This case function is a measure of the jump in the normal derivatives

of P1 and P2 across the common edge e, 1i.e.

s(fT. e) = |nx(a1—a2) + ny(bl—bz)l
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X A . . . : .
where n = [n ] is a unit vector in the perpendicular direction of the

edge e.

m
no= g where mo= v o+ (7\—1)vi - Avj

(vj VeV vi)

(vj T Ve Vi vi)

A =

This however does not seem as intuitively obvious and so for smooth
functions the Angle Between Normals criterion is probably better.

This brings us to the next category of criteria in which we try to
get some measure of how close the planes formed in R® by the

interpolants on neighbouring triangles are to being co-planar.

d) Near Planar Criteria

These criteria relate to cost functions defined on interior edges of
the triangulation, and attempt to give some measure of how near to being
planar two triangles, T, and T with a common edge e are.

1 2’

(7) Plane-fit (PF)

The plane-fit criteria measures the error between the linear
interpolants P1 and P2 interpolated at the other vertex Ve. Vk
respectively in the quadrilateral Q and the actual function value

Fe, Fk respectively

i.e S(fy. e) = I hl

where h = |Pl(xe, yg) - Fel
IP2(X ’ yk) - Fkl
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Intuitively this gives a measure of how far from being planar the

planes are, but it is probably best on smooth functions which do not have

large second derivatives.

Figure 9

(8) Plane Dist (PD)
The Plane-Dist Criteria measures the distance between the extended

planes P1 and P2 and the points v, and Wi respectively.

i.e. S(fr.e) = W hl

{ Dist (P,. F,) ]

h
Dist (P,. F,)

P (x . y)-F|

Jaz +bZ +1
m

m

where Dist (P , F ) =
m' n

This has the same advantages and disadvantages as the plane-fit
criterion.

In both near planar criteria the norms used are the norms which
correspond with the vector ordering norm, with the infinity norm
corresponding with the lexicographic ordering.

We now come to the final criterion.
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(9) Approximate Equidistribution

This criteria seeks to minimise a cost function along the edges in
the triangulation.

The criteria is based on that proposed by Sweby [10]. The
underlying idea is that, in 1-D, behaviour of the underlying function u
can be monitored by looking at the integral of some function w of u

over an interval [a,b],

b
i.e. look at I w(u(x))dx .
a

The monitor function, w, 1is some function of u which allows us to
look at its behaviour, i.e. u to look at curvature. This idea can be
used to position nodes to minimise errors.

Carey and Dinh [1] showed that it is possible to choose the monitor
function so that the error given by a k'th degree interpolating polynomial
in the Hm semi-norm is minimised.

We look at the weighting function in 2-D, integrated along interior
edges and minimised in each strictly convex quadrilateral. We will look
at the L2—Norm as is the norm which is used in calculating errors in the

Finite Element Method. Hence in 1-D

and in 2-D, the directional analogue is,
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w = (cos®0 u__ + 2cos® sinf u__ + sin?8 u )%
XX Xy Yy
Y. - Y.
where tanf = —-+—1
X — 3;
J i
and the cost function, S, is
V.
S(fT.e) = J Jw ods .
v,
1
In the test cases u , u and u could all be evaluated exactly
X Xy yy

v,
so finding J J wds was fairly easy using Gaussian quadrature.
v

i
This criteria could be quite useful as it would fit in with a node
placement technique based on equidistribution.

These are all the criteria that we looked at, in the next section we

look at the implementation details.

5. IMPLEMENTATION DETAILS

In this section we look at the different strategies that were used to
implement each criteria. We look at different Local Optimization
Procedures, the differences caused by searching the lists of triangles in

a different order and the use of a strict or non-strict inequality is the

swapping criteria.

(a) Local Optimisation Procedures (LOP)

In a truly "Local” LOP we would check just the costs across the edges

e = vivj and e' = ViVe: (see figure 9) and then keep the edge which has

the smallest cost.
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In the "global” LOP used by Dyn, Rippa & Levin [3], they set up a
vector cost S so that the effect of changing from e to e' |is

monitored across not only the internal diagonals but also the other four

3

> > > — ]
edges, ViVer ViV vevj and vjvk, (see figure 10), as well. The

resulting vectors 8§ and S' are then compared using the specified

vector Norm.

Figure 10. Possible triangulation of a convex quadrilateral.

It should be noted that MWT, MWT-3D, MAX-MIN angle and
equidistribution are already "Local” LOP, and that PF and PD rely on a

specified norm since the cost function across an edge is a vector.

(b) Differences in triangle searching

In searching to diagonals to swap, each triangle in the list of
triangles is taken in turn and neighbouring elements sought (i.e. those
with a common edge), in the rest of the list. On finding a neighbouring
element the two are considered as forming a quadrilateral in which, if
appropriate, the diagonal can be swapped. If no swapping occurs, another
neighbour is sought, or if all neighbours have been found then the next
triangle is taken as a base. However if swapping does occur there are
two options: either to take one of the newly formed triangles as base and

continue searching for its neighbours or to jump to the next triangle in

the list.
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The consequences can be that totally different grids are produced

with almost identical costs.

(c) Swapping strategies

As described in Section 2 we can define an ordering on the set of

triangulation, and form the definition that

TLCT if S<8’ according to some vector ordering.
From this defintion we can produce two strategies to change the internal
diagonals, e and e' with cost vectors S and S' respectively.

A sweep is a full sweep through the list of triangles.

The strategies are:-

i) Change from edge e to edge e' if S is less than or equal to S’

in the ordering, storing the number of swaps on each sweep and the

number of exact equalities on each sweep, when all the swaps in a

sweep are due to equality then change the strategy and change only if

S 1is strictly less then S', and keep this strategy until there are

no swaps in a sweep when the process is terminated.

ii) Change from edge e to edge e' if S 1is strictly less than S’
in the ordering and continue until there are no swaps in a sweep.
Then do one sweep where edge e is changed to edge e' if S is
less than or equal to S'. Then continue with the original strict

inequality until there are no more swaps on one sweep.

The consequences of such strategies are discussed in a further

section while in the next section we outline the test functions and data

sets used.
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6. TESTING PROCEDURE

In this section the underlying functions and the sets of data points,
which were used in the calculations are detailed and the procedure for
error comparison is outlined.
1) Data Sets

Three different data sets were used in the calculations. The first
two data sets were those of 33 and 100 points which were used by Franke
[4] and Dyn, Rippa and Levin [3]. The third set was a set of 81 points
set on a regular cartesian grid. The 33 point and 100 point data sets
are presented in Figures 11(a) and 11(b) respectively.
2) Test functions

The test functions were mainly smooth curved surfaces, although
function F7 had discontinuous first derivatives, and the numbering is that
used by Dyn, Rippa and Levin [3].

Only the functions detailed here showed any real improvement in

representations so detailed expressions for these are given. All the

functions are defined on the unit square

—9212 912 2
F1 = .75 exp [— (Ox=2) . (9y-2) ] + .75 exp [_ (921) _ L931'61)]
v 5 e [ I O 5 g [~ (oxe)? - (oy-7)7]
Fo . tanh (S9y-9x) + 1
- 9
FT.= | 1 if y-F24%
2(y - &) if 0<y-¢E<%
<
cos(4w;) + 1 Ty
L 0 otherwise
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where § = 2.1x - 0.1
ro= AE®® r 09°
F8 = tanh(-3g(x,y)+1) .g(x,y) = 0.595576(y + 3.79762)% - x - 10
X6 © 4,3_3 3.3, 6 X6 6 y6

F9 = [1 - 5} [1 - %] + 1000(1-x")"x"(1-y) y +y [1 - 5] + x [ - i]
For pictures of all functions except F8 see figures 13 and 14.
3) Error Calculations

On each triangulation the linear interpolating function, fT' was
constructed and the error between fT and the actual function F? was
computed on a grid of 33 x 33 nodes, uniformly placed over the unit
square. The mean pointwise error, the RMS error and the maximum error
were calculated. The maximum error was not instructive as it tended to

occur on the convex hull of the unit square and was usually due to the

sparsity of points on the convex hull, so the figures used in the tables

are the mean pointwise errors.
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7. RESULTS

In this section we present numerical and graphical results which show
how good piecewise linear interpolations of data can be achieved by using
data dependent criteria to generate the underlying grids. The effects of
the differing procedures as detailed in Section 5 are also discussed.

The numerical results presented here are the main pointwise error for
the different functions and criteria, found as detailed in Section 6.

The results for the 81 point data set are not reproduced here as
there were only slight changes in numerical and graphical results. The
graphical results show 3-D isoparametric surface representations
(isoplots), and contours produced by the interpolants on the grids, which
are trying to represent the actual functions which are presented in this
form in figures 13 and 14. Various grids which are produced are also
shown in figures 17 and 18. The data sets used, 33 data points and 100
data points, are presented in figures 11(a) and (b) respectively while the
Delaunay triangulations of these data sets are respectively produced in
figures 12(a) and 12(b).

As can be seen from the numerical results, the best critieria for all
functions with 33 data points is the ABN-2 criteria and this works
especially well with functions F2 and F8. ABN-2 also works well with 100
data points and improves all the functions, although the equidistribution
criteria works especially well with 100 data points except on F7 which is
not surprising. Equidistribution does not work quite as well with 33
data points and with function F7 it actually increases the error although
this is due to the fact that much of the function, i.e. the ramp and both
planes have constant slope and so only the mountain actually has non-zero
2nd derivatives and on the mountain the sparsity of points means that the

criteria cannot work well.
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POINTWISE ERRORS FOR 33 POINTS

METHOD FUNC 1 FUNC 2 FUNC 7 FUNC 8 FUNC 9
DELAUNAY | 0.04886 | 0.01604 | 0.06866 | 0.15210 | 0.05042
MWT-3D 0.05813 | 0.01585 | 0.06019 | 0.09926 | 0.04826
ABN-1 0.04033 | 0.00619 | 0.04210 | 0.13123 | 0.04633
ABN-2 0.03964 | 0.00610 | 0.04096 | 0.07723 | 0.04702
JND-1 0.04033 | 0.01176 | 0.04562 | 0.10457 | 0.04639
JND-2 0.04532 | 0.01107 | 0.04922 | 0.10456 | 0.04635
PF-1 0.04285 | 0.00618 | 0.04342 | 0.14730 | 0.04650
PF-2 0.04661 | 0.01190 | 0.05737 | 0.15113 | 0.04683
PD-1 0.05255 | 0.00618 | 0.04267 | 0.11505 | 0.04737
PD-2 0.05379 | 0.01188 | 0.04790 | 0.11513 | 0.04750
EQUID 0.04541 | 0.00614 | 0.06601 | 0.10472 | 0.04697

Table 1
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POINTWISE ERRORS FOR 100 POINTS

METHOD FUNC 1 FUNC 2 FUNC 7 FUNC 8 FUNC ©

DELAUNAY| 0.01637 | 0.00419 | 0.02707 | 0.04033 | 0.01492
MWT-3D 0.02002 | 0.00366 | 0.02869 | 0.01884 | 0.01249
ABN-1 0.01546 | 0.00145 | 0.02027 | 0.01390 { 0.01101
ABN-2 0.01550 | 0.00147 | 0.01727 | 0.02839 | 0.01075
JND-1 0.01571 | 0.00145 | 0.02207 | 0.02961 | 0.01097
JND-2 0.01533 | 0.00151 | 0.02099 | 0.03034 { 0.01079
PF-1 0.01563 | 0.00145 | 0.01881 | 0.03011 | 0.01137
PF-2 0.01634 | 0.00182 | 0.02000 | 0.03162 | 0.01115
PD-1 0.01600 | 0.00145 | 0.02374 | 0.02557 | 0.01113
PD-2 0.01670 | 0.00152 | 0.02576 | 0.02505 | 0.01079
EQUID 0.02070 | 0.00358 | 0.02675 | 0.03805 | 0.01639

Table 2
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The graphical results show many interesting features. Figure 15(a) shows
that for function F2 with 33 points, Delaunay produces a very poor
representation of the function, but figure 15(b) shows that ABN-2 can
improve this tremendously. Figure 15(c) and figures 16(a) and (b) show
that JND-2, PF2 and PD2 can improve the representation slightly and figure
16(c) shows that equidistribution works well in improving the
representation of F2. Figures 17(a) and 18(a) show the Delaunay
triangulation of 33 data points and 100 data points and figures 17(b) and
(c) and 18(b) and (c) show that with the data dependent criteria, ABN-2
and equidistribution, the grids produced have many long thin triangles
which run parallel to the countours.

Figure 19(a) shows the representation of F7 by a Delaunay
Triangulation of 33 points. It can be seen that the "ramp" contours are
not straight and that the "mountain' sprawls outwards. Figure 19(b)
shows that the ABN2 criteria has produced a smoothing of the "ramp"
contours and a compression of the "mountain” contours. Figure 19(c)
shows that equidistribution has struggled due to the functions constant
gradient sections and the sparsity of points. The "ramp” is exactly as
it was with Delaunay and due to the sparsity of points and the positions
of the gauss points for approximate integration the "mountain" has almost
been split in two.

In figure 20(b) we can see that with 100 data points on F7 that even
though the "ramp" is still unchanged from Delaunay, figure 20(a) the
"mountain” is much better represented. As with 33 data points ABN-2,
figure 20(b), much better represents the "ramp", but it only slightly

improves the representation of the "mountain”.
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Differing implementations produce in all cases almost exactly the
same errors but different grids, see figures 21(a) and (b) which were
produced by differing the order of taking triangles when a change had
occurred. A likely explanation for this phenomenon is that we are just
finding local minima rather than global minima. Possible modifications

to the search procedure are discussed in the next Section.
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8. SUMMARY

There is an increasing use of numerical techniques which require an
initial triangulation able to well represent the initial data when this is
interpolated on it. It is necessary therefore to develop methods of
constructing triangulations according to data dependent criteria in order
to achieve this aim. It is intuitively clear that such methods exist and
in this report we have detailed some that might be used.

Using a Delaunay triangulation as a starting grid we have applied a
local optimisation procedure to obtain a locally optimal triangulation
with respect to a given data dependent criteria. As can be seen from the
graphical results, the resulting triangulations are a lot smoother in
representing the underlying data function than the original Delaunay grid.

A disadvantage of the local optimisation procedure, however, is that
it is not guaranteed to find the global minimum of the cost function but
it is likely to find first a local minimum. A possible improvement could
be made by modifying the implementation, for example, checking the edges
with the largest costs first rather than going through the list
sequentially. Alternatively, not using an initial triangulation but
instead using diagonal swapping when inserting nodes to construct an
optimal grid at each stage of node insertion. This is an area for
further research.

Of the methods surveyed here, the best schemes seem to be those based
on the nearly C' criteria, e.g. the angles between normal criteria. In
almost every case these criteria reduced the error produced by the
starting grid and in a number of cases significantly reduced the error.
The equidistribution based criteria produced better results than the

starting grid in most cases, and for 100 data points was usually as good

as the nearly C' criteria.
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Future work will involve moving the data points, via some criteria,

while keeping the connectivity of the data points the same, and

eventually, combining node reconnection and node repositioning to produce

better data representations. It is hoped that some of the criteria

surveyed here will be useful in the future work.
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