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INTRODUCTION

This report represents work carried out on R.A.E. contract number
DER/1/9/4/2035/065//XR/AERO, since 1st November 1989.

The objective of the contract is to produce a code capable of
solving the pseudo unsteady Euler equations (H system), by applying a
cell vertex finite volume method to a transonic flow problem, initially
flow in a bumpy channel. A code which was not completely satisfactory
was already in existence, namely a version written by M. Paisley which
was based from the Morton and Paisley report [1]. This code attempts to
fit a line of discontinuity into the solution domain, using a grid line
which is double valued, and shaped by a least squares cubic polynomial
representing the shock. The discontinuity has flow variables specified
on both upstream and downstream sides, and is moved according to the
local shock speed. However the code is unsatisfactory in that the
unknowns do not converge along the shock, and consequently the shock
speeds do not converge or reduce to zero. The cause of the non
convergence at the time the contact began was thought to be due to the
manner in which the shock tip in particular was treated.

The bulk of this report contains the details of the most
significant experiments tried in order to improve convergence.

Chapter 1 deals with some preliminaries such as, defining the flow
equations, boundary and initial conditions. Also it describes the
solution procedure in the original method, and some modifications made
to the original code to make it more robust or accurate. Chapter 2
describes a set of experiments done under the assumption that the shock

was normal to the flow. Chapter 3 describes fewer experiments carried



out using a variable switching method, and Chapter 4 deals with all the
experiments that use the actual positions of the shocked nodes to
calculate the shock angles, including variations on the cubic polynomial
curve fitting. Chapter 5 is the final experimental work and describes
experiments which combine both shock capturing and fitting. Fach
experimental chapter has its own conclusions section which summarise the
main results. Finally Chapter 6 draws conclusions from all previous

chapters and puts forward possibilities for future work.



CHAPTER 1
Defining the Problem

Here follows a description of the equations to be solved, and the
boundary conditions.

Since only the steady state solution is of interest we assume

constant enthalpy, and consequently the system of equations to be solved
is the H system, i.e.
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where u = - = pu® +p G = R
pv puv pv3+p

u and v are the velocity components in the x and y directions
p 1is density

P 1is pressure

After non-dimensionalising the variables in the usual way, the above

equations remain unchanged while the pressure by Bernoulli’s equation is

i

P =B[1 - oD (2 +v2)]

where <~ 1is the ratio of specific heats = 1.4.

The shape of the domain and boundary conditions are as in Hall [27],

but to remind the reader the calculation is performed on a circular arc
bump with height—chord ratio 1:10. The channel width is 1 chord and the



channel extends one chord from the leading edge (LE) backwards and one
chord from the trailing edge (TE) forwards (see Fig. 1).

The boundary conditions for the subsonic inflow and outflow are
arrived at using the characteristic theory from simplified
unidirectional flow, i.e. at inflow we have two ingoing characteristics
and one outgoing characteristic. Hence two pieces of information are
specified from outside the solution domain, which are chosen to be
v = 0 (parallel flow) and P = Eﬂ (the isentropy condition). Then p
is specified by calculation from inside the domain, and u can then be
solved for via Bernoulli's equation. At outflow we have two outgoing
characteristics and one incoming characteristic. Here we choose to

specify the pressure at outflow as

v/
1-v
1) .2
P=1[1+ L—ﬁ—l-Mm] where M = 0.675

and pu, pv are calculated from inside the domain: p is then
calculated via a rearrangement of Bernoulli’s equation.

On the top channel wall we prescribe a symmetry condition which
also ensures that the flow is tangential, i.e. v = 0 . On the bottom
wall we enforce tangential flow again, via a symmetry principle.

The initial conditions are v = 0 and Moo everywhere except along
the bump, where the tangential velocity is the tangential component of
M, . and the normal velocity is zero. The density is then calculated
using the isentropy condition and Bernoulli’s equation.

The resulting flow will contain a shock whose foot is positioned on

the bump, due to the fluid being accelerated over the bump. The problem

is to develop a procedure capable of fitting a discontinuity in the



correct place, which allows the solution in the entire domain to

converge and the shock speeds to reduce to zero, all along the shock.

INITIAL SOLUTION PROCEDURE
The procedure used when the problem was first approached was that
of a multigrid Euler solver, using a cell vertex method with
Lax-Wendroff time-stepping as described in Hall [2], coupled with the
shock-fitting procedure used by Morton and Paisley in [1]. Essentially
this firstly captures the shock with the help of artificial viscosity,
and then attempts to fit the shock along one grid line by use of a
weighted least squares cubic polynomial. However this approach was
found to be unsatisfactory because
a) the solution vector u did not converge sufficiently, particularly
around the shock tip
b)  problems encountered when reducing the mach number at outflow,

namely negative arguments of square roots in

1
PL used for calculation of upstream mach
At -os[i- )

number on shock

Pr

and

v {1 - 0.5(7-1)(u® + v?)}

used in calculation of the sound speed and often occuring on the
downstream side of the shock, both around the tip and foot
particularly

c) i) sensitivity of shock position and orientation to weights used.



ii) Shock speeds continually indicate that the shock wishes to
move in a particular direction, but the restraining effects of the

cubic fit prevent it from doing so.

NUMERICAI. EXPERTMENTS WITH SHOCK FITTING

Any shock fitting solution procedure is faced with the task of

calculating

P P
pu|l and ([pu

pvly PVl

together with shock orientation angle o« and shock speed s
Hence there are eight unknowns which determine the shock

completely. Four of the unknowns are calculated by the finite volume

T

method, i.e [p pu pv] and PR (in an attempt to obey

L

characteristic theory) leaving (pu)R. (pv)R ,a and S to solve for,
and only 3 equations from the Rankine-Hugoniot jump conditions to solve
with. Hence an extra piece of information is required.

The cubic fit procedure provides the additional piece of
information in the form of the shock orientation angle a at each node.
However because of the problems associated with this method, an
alternative was sought.

The following is an ocutline of the main alternatives tried and the
results obtained. However firstly it is necessary to describe some of
the modifications which were made to the method as it stands in order to

improve it, before any experiments were carried out.



MODIFICATION OF SHOCK MOVEMENT AND GRID REMESHING

As the code stands the shock is moved in the x direction only,
according to (sin a) S At, i.e. the x component of the normal shock
speed. Then a patch of the mesh, 3 cells either side of the grid line
used to represent the shock, was adjusted so as to space these cells
evenly. At the same time the nodes which were moved kept the same y
values. This was found to lead to grid distortion and consequent
instability in situations where the mesh movement was large.

The improvement was made by taking account of the y component of
the shock movement, and using a remeshing procedure which was much less
likely to cause grid distortions. The y component of the shock
movement was calculated as - (cos a) S AT , and the new features of the
remeshing procedure are:

i) Equidistant spacing of grid nodes occur in each horizontal line,
between the shock node and x = O to the left, and the shock node
and x =1 to the right, for all horizontal lines which have a
shock node on them, whilst those without a shock node are spaced in
the same way as the horizontal grid line which passes through the
shock tip.

ii) Adjustment of the vertical grid lines so that they correspond to
the new y value of each shock node whilst maintaining the same
body fitted shape.

iii) Respacing of horizontal grid lines above the shock to even out any
grid compression which may have occured above the shock in the
vertical direction.

The result of implementing this procedure was to increase the
convergence rate ofthe original cubic fitting method, and reduce the
residual shock speed. The resultant grid was much more even, which is

particularly important for the cell vertex method.



MODIFICATION OF UPDATING PROCEDURE AT SHOCKS

Instead of using the usual non-reflective conditions when updating
on one side of the shock, the method was modified so that the areas of
the cells whose rediduals were set to zero were the actual cell areas as
opposed to the image cell areas, when calculating the first order
change. Also the integration cell used to calculate the 2nd order
change was that formed by the centroids of the four cells surrounding
the point being updated. This was found by experience to be more
successful in relation to the instability of the method, which usually
shows itself as a code crash due to negative square root occuring, as
mentioned previously. The reason for this is that if the grid becomes
distorted around the shock, as in Fig. 2a, then an integration cell
formed by a one-sided reflection procedure can easily become very
unrealistic, which in turn makes the 2nd order update inaccurate, which
leads to instability. By contrast the integration cell formed by the
centroids of the four surrounding cells has a more robust area.

This was particularly important at the shock foot where previously
only one cell and its centroid were used to determine the integration
cell area ( Fig. 3a). In this case we have the additional factor of a
tangential boundary. In the modified method we use an integration cell
constructed from the two cells either side of the shock, and the

centroids of their image cells (Fig. 3b).

DELETTION OF MULTIGRID ACCELERATION IN SHOCK FITTING PHASES

Once the shock had been captured sufficiently, the shock fitting
phase was extended. It was decided to do this on the finest grid only,
to avoid the added complexity of using multigrid, and so the multigrid

part of the fitting code was left out.
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CHAPTER 2

The first alternative solution procedure to the cubic fitting
method was to assume that the shock was normal to the flow, hence there
was no tangential component to the flow on either ustream or downstream
side. This makes the calculation of the shock orientation angle to the
X axis particularly simple, because once we have calculated u. and

L

Vi the velocity components in the x and y directions on the

\'
upsteam side, then tan(a - g) = EL , hence providing the additional
L

piece of information to solve the Rankine-Hugoniot jump conditions for
the remaining variables.

The assumption of normal flow along the entire shock can be
justified, since at the shock foot the flow is normal due to a zero
tangential component and, if we examine the many mach contour plots
available of channels and aerofoils (see Figs. 4a and 4b), where a shock
has been captured or fitted using a cubic, it is easy to observe the
sonic line as being continuous with the shock tip. Since the normal
component of the mach number of a stationary shock is equal to 1.0 at
the tip, the shock tip has no tangential component, consequently it
seems reasonable to assume that the flow is normal along the entire

shock length.

EXPERTMENTS WITH THE NORMAL FLOW ASSUMPTION
The code was rewritten so that the angles of the shock nodes were

calculated as above, and no cubic fitting was used. Also the smallest
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time step of the entire solution domain was used to advance the
calculation and the shock movement, in order to mimic a time accurate
solution closer. This resulted in a solution which converged slowly
though not monotonically, with respect to the shock speeds of the
shocked nodes. The results of a 10,000 iteration run are recorded in
table 1, where the maximum shock speed and x position of the shock
foot and tip were noted every 1,000 iterations. The resulting grid is
shown in Fig. 5.

These results contrast with those of the captured solution in that
the shock front is approximately 0.1 further downstream, and the tip is
approximately 0.03 further upstream in the fitted solution. Also it is
clear that not all of the shock is Being represented as P # pp at the

tip.

EXTRAPOLATING THE TIP

For the latter reason a procedure was developed which could
elongate or shorten the shock periodically in the direction the tip was
already pointing by an amount proportional to the magnitude of the
difference between the normal mach number (MNL) and 1.0 at the shock
tip. This would hopefully fit a shock in the area where a shock was
neither being fitted or captured (since no artificial viscosity was
present), and consequently reduce any oscillations produced in this
area. In the original (Paisley) method used, an extra grid point is
added if the captured shock at the grid point immediately above and
upstream of the tip contains a captured shock of sufficient strength.
In contrast this new procedure moved the grid point corresponding to the

tip in the appropriate direction. Also the grid line index number



- 19 -

corresponding to the shock was increased or decreased if the shock foot
moved past the x value corresponding to the original position of the
adjacent grid line, and the shock values were transferred onto this grid
line.

Various periods at which the shock was elongated or shortened, and
different values of the constant of proportionality by which the shock
length was altered were tried, but none resulted in convergence of the
shock speeds, and more often the program crashed due to a negative
argument of a square root in the sound speed calculation.

It was thought that the reason for this instability might have been
the cells at the tip becoming too elongated, and so instead of moving
the tip grid point upwards an extra grid point was brought down to
represent it and the unknowns at this point were given common upstream
and downstream values, equal to the original values of the point. If
however the shock were to need shortening then the node would simply
move downwards as before. The result of doing this was that too many
grid points were used resulting in a long shock which moved too far
upstream, whilst the foot moved too far downstream causing the grid line
which represented the shock to be continually replaced by the grid line
upstream of it. The net result was a diverging solution which
eventually caused the code to crash.

After examining the grids produced in the last two cases, it became
clear that altering the vertical grid line which represents the shock,
if the shock foot has moved sufficiently, is not necessarily helpful.

If we consider what will happen should the foot wish to move forward but
the tip backwards, we see that although the cells at the foot may be
evenly spaced, those at the tip will become unevenly spaced (see

Fig. 6).
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In view of the above the code was run without any extrapolation or
contraction of any kind, and the grid line representing the shock was
kept the same, with a constant number of shocked nodes. The result
after 20,000 iterations is shown in table 2, where the horizontal lines
labelled 1 to 7 correspond to the upstream and downstream values of the

shock nodes, 1 being the foot. The vertical columns are respectively

p, pu, pv, ¢, S, MVL, x position

The convergence of the shock speeds was not monotonic, and the maximum

residual =~ g%-: 0.1163 occurring at the leading edge (L.E). The

resulting grid is shown in Fig. 7.

TESTING STABILITY OF SOLUTION TO SHOCK LENGTH

Next, in order to test how sensitive the solution is to
representing the shock in its entirety, the same code was run, except
the node corresponding to the tip was removed after 2,000 iterations,
and the code ran for a further 18,000 iterations. The results are shown
in Table 3.

The maximum residual was 0.1157, occurring just upstream of the
shock tip. Note the maximum shock speed is nearly 30 times larger than
when seven shock nodes were used, and again the convergence was

unsteady.

SHOCK SHARPENING VARTATIONS

Several experiments were also carried out with the initialisation

of the shock values, immediately after capturing the shock, including
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putting upstream values equal to the downstream values, and their common
value equal to the average of the extrapolated values either side of the
shock, or the interpolated value in the shocked cell depending on its

detected position - no significant improvement on the shock speeds was

recorded.

DISCUSSION
The experiments performed so far indicate that

i) uneveness of the grid can easily cause instability and should be
avoided

ii) the solution is very sensive to how closely the length of the shock
is represented

iii) examination of the results after 20,000 iterations indicate that
the positions of the shock nodes, and the angles assciated with
them, are inconsistent with a continuous curve without kinks in it.

(The angles with the x axis are all less than % , yet the nodes

have successively smaller x values).

ADDITION OF ARTICIFICAL VISOOSITY IN TIP REGION

In order to eliminate the sensitivity of the solutions to the shock
length, and consequent grid uneveness, it was decided to attempt to
smear out the shock in the tip region with artifical viscosity, whilst
representing the reminder of the shock using a normal flow assumption as
before. (Previously when shock fitting, artificial viscosity was

switched off everywhere in the solution domain). The viscosity added

was of the form

m IRy (P) |+ [Rg(p) | + [Ro(p)| + [Ry(p) I, + U + Uy + Uy - 4v,]
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when being applied to node 1 (see Fig. 7a), where
RA(p) c.. RD(p) are density residuals in cells A ...D
UA ....... UD are the corresponding components of vector u in
cells A ...D .
Uc=%[U1 +U2+U3+U4]
Hy is usually taken to equal 0.02,

The experiments conducted applied the viscosity to the nodes marked
x in figures 8 to 10. If these points were double-valued shock nodes,
then they are now treated as single valued nodes.

The result of applying viscosity as in Fig. 8 was to give a shock
foot position = 0.828, a maximum shock speed = 0.04 and a RMS residual
= 0.011 after 1,000 iterations. Hence the foot was further downstream
than in the solution without the additional viscosity. The
configuration used in Fig. 9 produced a shock foot = 0.840, a maximum
shock speed = 0.02 and a RMS residual = 0.0467. This was virtually
unchanged when varying the constant My from 0.01 to 0.05. Finally
the configuration used in Fig. 10, with My = 0.10, gave nearly
identical results to Fig. 9. None of the configurations used improved

the convergence of the shock speeds at the remaining shock nodes.

EXPERIMENTS WITH SHOCK MOVEMENT

A different approach to the problem of getting the solution to
converge was to alter the manner in which the shock nodes were allowed
to move, in order to find the steady state position of the shock.

A function was defined which measured the state of convergence of
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the shock speeds, which was
JMS
F= z |SJ|
J=1

where SJ is the shock speed of the node J , and JMS is the number of
the tip node. It was soon realised that SJ (J =1 to JMS) is
ultimately dependent upon the positions of the other shock nodes, and
the unknowns at the other nodes, i.e. a change in the position of just
one node will after a few iterations change the value of S at all
other nodes. With this in mind it was thought that minimising F for
each node may lead to the steady state position of the shock. So the
value of F was assessed every 10 iterations, whilst allowing only one
of the shock nodes to move, starting with the foot, until F started to
increase, then this node was "locked up"” and the same procedure applied
to the next node up, and so on until every shock node had been treated
in this way. Then the process was repeated starting from the foot
again.

After 1,000 iterations the maximum shock speed was not
significantly different from that without this procedure, though the
node positions did not have as much time to converge, since each node
was moved JMS times less on average. The position of the nodes seemed
to be similar to those of the captured solution and the root mean
squé;ed residual (RMS residual) = 0.0066.

A different tactic tried was to simply move the nodes one at a
time, every 10 iterations, regardless of the value of F , so that there

was no restriction on which direction the node moved in. This resulted

in a maximum shock speed slightly higher than would have been without
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this procedure, and a RMS residual = 0.005 after 1,000 iterations.
In both of the above cases the convergence appeared to be very
slow, and the angles on the shock were not consistent with the position

of the shock nodes.

OTHER SHOCK MOVEMENT EXPERIMENTS

These included the use of the global minimum time step to advance
the solution, in order to make the shock shape mimic the physical
solution more closely, and the use of different periods at which the
shock was moved, i.e the number of iterations between shock movement.
However none of these produced any significant benefit in terms of shock

speed convergence.

SHOCK TRACKING METHOD

The theory behind this scheme can be found in Samuels [3]. An
outline of the method and its numerical implementation is as follows.

Suppose we have a shock at some point on which component i of the
vector of unknowns u = [p,pu,pv]T has a value Ui , (at time t). Our
aim is to track this value of Ui onto the shock curve at t + At

To accomplish this, the point on the shock requires a normal
velocity component S and a tangential velocity component a% . The
normal component S can be calculated as usual from the jump

conditions, whilst the tangential component is
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where
ort agt
i x T 3y
V' = T
|vu” |
v is a unit vector normal to the shock

|4

is a unit vector tangential to the shock
i . . . . i
H} is a unit vector in the direction of wu
gFl acl . . . . .
ol 3y is the ith component of the residual which we calculate in our
cell vertex method.
vu' can be estimated at a point on the shock via a bilinear
approximation, u' = ax + by + cxy + d
i du’ du’ Ou du’

+ 42— and s—=a+cy, 3— =b + cx .

O =5 T &y 3x

The coefficients a,b,c and d are found by applying the bilinear
approximation at four local points (see Fig 11) including the point in
question. In practice this is done twice using points 1,2,3 and 4 and
then points 3,4,5 and 6 and taking the average value of gﬁ- and g%
at point 3.

Once S and a% have been found we resolve the velocities into x
and y directions to give:

2 X"+ At S[sin a] + At a% cos a

"
]

n+l

<
Il

vy - At S[cos a] + At a% sin a

where « 1is the angle the shock makes with the x axis.
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The shock movement routine was rewritten to incorporate the
tangential velocity component. The first time it was tried, instability
resulted because some of the horizontal grid lines were running into
each other, or getting very close together, causing grid uneveness,
which eventually let to the code crashing. However the sizes of the
normal and tangential components of the shock velocity were comparable
to each other.

Once the frequency at which the shock was moved was decreased, and
the tangential component at the foot was left out (since it was
calculated using only one cell as opposed to two) the code ran without
crashing, (for the 2,000 iterations it was run for) but convergence was
slow and the RMS residual = 0.306 which was comparatively large. Also
the shock foot continually moved further downstream. In conclusion this
method did not aid the convergence of the shock speeds, and did not
behave robustly, due to the grid uneveness caused by horizontal lines
becoming compressed, although the latter could possibly be overcome by

introducing safety measures into the remaining routine.

CONCLUSIONS FOR NORMAL SHOCK ASSUMPTION

The work carried out so far under the assumption that the flow is
normal to the shock has provided useful information about the behaviour
of the solution.

Firstly the absence of either artificial viscosity, or a
double-valued shock line in a region where a shock exists, will cause
oscillations in the update vector, which leads to instability and
eventually the code crashes, usually due to a negative square root.

Consequently the solution is very sensitive to the way in which the
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shock is represented, the tip being the most difficult part to
represent, because it is here that the shock vanishes. The technique
used to fit the tip by extrapolating the upstream normal mach number
(MNL), was on reflection rather arbitrary, and could have been improved
by fitting a function which takes account of MNL and the distance along
the shock from the foot at several points, as opposed to one.
Alternatively interpolation in the captured region of the shock could be
helpful to detect where MNL = 1.0 , and then adding an extra grid
point, or move the last grid point.

The use of artificial viscosity at the tip, in order to smooth out
the discontinuity, produced no significant improvement in the reduction
of the shock speeds.

The attempts made to manoeuvre the shock into the correct position
by various means, including allowing only one node at a time to move in
a direction which minimises the overall shock speed, were not successful
in reducing the shock speeds sufficiently. In fact it appeared that the
function F wused to minimise the shock speeds had many local minima, in
which the minimisation process got stuck. The inclusion of a tangential
shock velocity in order to track the shock, did not improve the
convergence either. Further work is required on this method to ensure
that grid distortion does not occur.

All the experiments tried failed to reduce the shock speeds of the
shocked nodes to zero, whilst producing a plausible shock shape.

However they all had one common result, which was that the shock angles
and the position of the nodes were consistent with a curve whose
curvature alternated between positive and negative (see tables 2 and 3).

In fact all the shock angles were less than w/2 , yet the nodes had
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positions with progressively smaller x values.

The method used treats each point individually, and there is no
requirement for the points and shock angles to be consistent. The
results in table 2 indicate that it is possible for the shock speeds to
converge, to nearly zero, but the resulting shock shape is unrealistic.

What seems to be required is a curve that is normal to the
direction of flow, and has a curvature which does not change sign.
There are several possibilities for such a curve, for example a least

squares cubic, whose coefficients are calculated by ensuring

<|e

a9
dx

or a cubic spline under the same restraint.
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CHAPTER 3
OBTAINING ADDITIONAL INFORMATION FROM THE PREVIOUS TIME LEVEL

This technique provides the additional piece of information
required by using a variable value from the previous time level.

Assume at some time that we have all the information to specify the
shock completely, provided by say using a least squares cubic curve. At
the next time level we have the unknowns uR.vR,S and a . The
approach is to specify S from the previous time level, and then solve
the 3 jump equations for Up.Vps and a . Then at the next time level
we specify a from the previous level and solve for Up. V. and S .
This switching is continued whilst all the time pL,uL,vL,S and PR
are being updated as usual, hence providing new information to close the
system until (hopefully) convergence is reached when the shock is in
the correct position.

One drawback with this approach is when solving for a a quadratic
is formed. The two roots of the quadratic correspond to two angles. If
the shock is close to being normal to the flow, the roots are very close

together and which root to choose is not clear.

The equation which presents itself is

-b + vb2Z - 4ac

Ccos a = o
where
_ .2 2
a = uL + Vi
b = 2VL[S+aLML]

2

= [S+aLML]2 -

(¢]
1
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where u .V and a; are the upstream components of velocity and sound

speed, ML is the upstream relative normal mach no., equal to

INL
S

up sin a - v, cos a , and S 1is the shock speed.

If all variables are at the same time level then

and ANL is the upstream normal velocity component equal to

b® - 4ac = 4uf[uf+vL - qﬁL] = 4ui[uLcos atvy sin al®> >0 .

However because the shock speed is taken from the previous time level

(s,) -
2 _ A4 2[2 _ 2
b dac = 4uL[uL+vL (So+aLML) ]

and so there is a possibility that b?% - 4ac < O .

The method is similar to the normal flow assumption, in that there
is no guarantee that the angles at the shock nodes will be consistent
with the node positions. We assume that the method will manoceuvre them
into the correct positions and the angles will be consistent at

convergence.

EXPERIMENTS WITH VARIABLE SWITCHING

When the code was run with this variable switching included, the
shock tip moved progressively further back as far as it could go,
producing a very distorted grid, and the shock angles were not
consistent with the shock shape. At this stage the angle chosen in the
angle calculation was taken to be the smallest of the two. So the next

time the code was ran the angle chosen was that which was closest to the
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angle at the previous time level. This results in the same grid

distortion. Then the largest of the two angles was chosen, but this

resulted in the argument of vhZ - 4aL becoming negative. To overcome
this the argument was put equal to zero and the calculation continued.
After 1,000 iterations this gave a max shock speed of 0.03. A shock
foot position of 0.814 and a tip position of 0.561. However if the
iteration continues a sawtooth shape begins to form, and after 2,000
iterations the shock speeds were no smaller than at 1,000, i.e. the

method was not converging.

MINIMISING THE SHOCK SPEEDS

The minimisation procedure, as used for the normal shock assumption
described on page 15, was applied to this variable switching method, to
minimize the function F . After 1,000 iterations the maximum shock
speed was - 0.03, and the RMS residual was 0.009, the shock shape being
in reasonable agreement with the captured solution, but the angles were
inconsistent with the shape.

If only one node was moved at a time in order along the shock,
giving the solution time to settle before moving the next node, then
after 1,000 iterations the shock speed = 0.07, the RMS residual
= 0.0077, and the shock shape was in reasonable agreement with the
captured solution, but again the shock angles were inconsistent with the

node positions.

OONCLUSIONS FOR VARIABLE SWITCHING

The method of variable switching did not aid convergence of the

shock speeds, and either resulted in a shock which was sawtooth, or one
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which was inconsistent with the shock node angles. However on
reflection the method can be critisized. Firstly it should not have
been used at the shock foot, since here we can obtain o from the flow
tangency condition, and then solve for UpVp and S via the 3 jump
equations. Hence the specification of a from flow tangency closes the
system. By also using S from the previous time level, the system is

overspecified. This may have contributed to the negative argument of

vb? - 4ac  which occurred frequently. Secondly, as well as setting
b? - 4ac equal to zero when it was less than zero, the shock speed
should have also been updated in accordance with b? - 4ac = O . This
is consistent with the flow being normal to the shock at this point.
Thirdly, the problem of deciding which of two angles to use when solving
a quadratic equation for a was not answered.

However, even if all these points were resolved, there is still
doubt that the method would converge, because like the normal flow
assumption there is nothing to make the shock angles consistent with the

shock shape.
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CHAPTER 4

USING THE SHOCK SHAPE TO DETERMINE THE SHOCK ANGLES

From our previous experience with using shock nodes, at which the
angles do not necessarily correspond to the position of the nodes, the
shocks speeds do not converge, and the nodes do not generally manoeuvre
themselves into positions which correspond to the angles. A method of
estimating the angles was therefore derived which used the actual

positions. The first method calculates

Y(IXS.J) - Y(IXS,J-1)
2(J) = F(IX8.J) = X(IXS, J-1)

where IXS is the discrete vertical grid line number which represents
the shock. Hence this method uses the gradient of the grid line
immediately below the node to estimate the angle of the shock at this
point (see Fig. 12). The angle at the shock foot is calculated using
flow tangency. The code was ran for 1,000 iterations, moving the shock
every 10 iterations. This resulted in a shock shape which was sawtooth,
gradually getting worse as the iterations continued (see Table 4 - note
the large residuals). The resulting grid is shown in Fig. 15.

To counteract this sawtooth pattern, o was calculated by
averaging the gradients both above and below the node (see Fig. 13),
except at the foot, where the shock was taken to be normal to the flow,
and the tip, where the previous one sided estimated had to be used. The
code was ran for 1,000 iterations, the result again being a sawtooth
shaped shock but not as severe as before (see table 5). Also the angles

had virtually converged after 1,000 iterations. Examination of Table 5
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shows that the shock speed was alternately positive and negative, and

the angles increasing then decreasing.

MINIMISING THE SHOCK SPEED

The minimisation of the shock speeds via function F , as described
on page 15, was tested with the angle/position method just described.
After 1,000 iterations a mild sawtooth shaped shock was produced. The
maximum residual and RMS residual were larger than when this process was
applied to a normal flow assumption, and the shock speeds were generally
no smaller than without using the minimisation process.

If instead of minimising F , each node was moved sequentially
regardless of the size of F , then the maximum shock speed, residual
and RMS residual were slightly smaller than when minimising F .

However the improvement was not significant compared to the results

achieved without the minimisation process.

APPLICATION OF SHOCK TRACKING METHOD

The shock tracking method as described on page 17 was used in
conjunction with this angle/position method. The result was a code
crash, which was caused by bunching of horizontal grid lines. The angle
position method was then changed by weighting the two gradients used,
depending on the distance between the two adjacent nodes (see Fig 14).
This resulted in a code crash also, caused by bunching of horizontal
lines (see Fig. 16). The tangential component of the shock speed at the
foot was then put equal to zero, because it was thought that it may be
in error, due to the calculation of grids being one sided at this point.

Also the frequency at which the shock was moved was decreased, and the



- 28 -

minimum global time step was used to advance the whole calculation. The

sawtooth pattern still emerged and the code eventually crashed after

3,500 iterations, due to bunching of the horizontal grid lines.

FITTING A LEAST SQUARES CUBIC POLYNOMIAL

Having not found a method capable of fitting the shock so that the
shock shape is plausible and the shock speeds and variables converge, we
return to out starting point. This was the use of a least squares cubic
polynomial to respresent the shock and hence provide the orientation
angle. The best results obtained so far using this method can be seen
in Table 6, where the method was ran for 5,000 iterations. In an effort
to improve these results we firstly tried the inclusion of the shock
tracking method as previously decribed. An evenly weighting cubic and a
weighting which is biased towards the shock foot were both tried,
together with the use of the smallest global time step, and a reduction
in shock movement frequency. However the result was always that the
horizontal grid lines would sooner or later bunch up as in Fig. 16, and
the residuals would become large around the leading edge. Another idea
was to impose continuity of all flow variables at the shock tip, without
the shock tracking method. This resulted in the updates and residuals

becoming large around the tip area.

QONCLUSION FOR THE USE OF SHOCK SHAPE TO DETERMINE ANGLES

" The estimation of the shock angle at a shock node, by a weighted
combination of the gradients between the node and the adjacent shock
nodes, appears to have the peculiar effect of producing a sawtooth

shaped shock. The shock speed minimisation procedure did not stop this
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sawtooth shape emerging, or reduce the shock speeds. The shock tracking
method generally produced a distorted grid and a sawtooth shock.

The use of a least squares cubic to represent the shock produces a
plausible shock shape, but leaves residual shock speeds, which do not
converge themselves, as do not the unknowns along the shock, the maximum
shock speed being some 50 times larger than that achieved using a normal
shock assumption for 20,000 iterations. In effect we have a boundary
which is moving about very slightly, which perturbs the unknowns along
it, which in turn moves the boundary, but equilibrium is not found. The
imposition of tip continuity, and the inclusion of a tangential shock

speed, only hinder the convergence.
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CHAPTER 5

EXPERIMENTS WITH SHOCK CAPTURING AND MESH ALIGNMENT

In order to investigate the effect of artificial viscosity on the
shock captured solution, the initial part of the code, which captures
the shock ready for fitting, was ran on a 17X65 grid and a 33X129 grid
with multigrid for 1,000 iterations using various values of the
aritificial viscosity parameter My oo The resulting detected shock
positions are recorded in Tables 7 and 8.

The 17 x 65 grid results show that the positions for My = 0.01 to
0.04 are unchanged to 2 decimal places except at the tip for My = 0.04.
For By = 0.005 however the positions are considerably changed, in
particular the shock foot has moved further upstream. If we compare
these results with the 33X129 grid, we see that for My €< 0.02 the
shock foot is again considerably further upstream and the tip also to a
lesser extent. The illustrates the arbitrariness in the use of

artificial viscosity.

ALIGNING THE MESH

It is shown in Morton and Paisley [1] that the error caused by
evaluating the line integral J F dy - G dx by the trapezoidal rule, in
a cell which is intersected by a shock, can be minimised by positioning
the mesh so that the shock exactly bisects the upper and lower sides
(see Fig. 17).

A procedure was therefore developed which could capture the shock
on the initial grid, detect the shock position, and realign the mesh so
that the shock bisects all shocked cells. Then this process was

repeated so that eventually the shock would always be detected in the
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same position (bisecting a column of cells) and convergence could
(hopefully) be achieved.

Theoretically, for a shock whose flux vectors change at an equal
rate with distance or are constant for half a cell either side of the
shock (see Fig. 18), it should be possible to set all residuals to zero.
As a consequence of this the component of the artificial viscosity,
which is proportional to the density residual, will equal zero.

This procedure was tested using 1,000 iterations on the finest grid
for each mesh, before realigning the mesh to the new detected shock
position. The results are shown in Table 9. After 1,000 iterations in
the 10th grid position no shock was detected. It is clear from Table 9,
that the process was getting out of control, and that the mesh was very

distorted by this point.

OTHER OBSERVATIONS ON SHOCK CAPTURING

It was noticed that the converged solution when using multigrid is
not identical to the converged solution when iterating on the fine grid
only. The can be shown by obtaining a converged solution using
multigrid, and then switching to the fine grid. At this point the RMS
Fﬂ%%%zg} value rises and then decreases again as the solution converges
on the fine grid. Also the RMS residual obtained using multigrid equals
0.0281, as opposed to 0.0302 on the fine grid only. The largest
residuals in both cases occur around the leading edge, and around the
shock.

The reason this occurs is thought to be that the multigrid solution

does not add any artificial viscosity to the solution, either as a

background smoother, or around the shock, because the multigrid process
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is a smoother in itself. The solution on the fine grid however adds
both types of viscosity, and hence converges to a slightly different

solution.

CONCLUSION ON SHOCK CAPTURING AND MESH AL IGNMENT

In this section we have experimented with the use of artificial
viscosity to capture shocks. The results without any mesh adjustment,
show that the choice of the artificial viscosity parameter My is
rather arbitrary, and is often chosen to give the "best" results in
terms of convergence properties and shock position. Next we tried to
adjust the mesh so that the shock passed through the middle of the upper
and lower faces, of the shocked cells. This if successful would have
minimized the residuals and consequently the artifial viscosity present.
However in practice the process of repeatedly adjusting the mesh got out
of control. Some of the reasons why this may have occured are as

follows

i) The shock detection algorithm is not accurate enough at

detecting where the shock is in a cell.

ii) The type of viscosity used is not conservatively formulated,
and will not therefore necessarily produce a shock in the correct

position.
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CHAPTER 6

OONCLUSTONS AND DISCUSSION

The object of the work carried out on this report was to produce a
method capable of achieving convergence of the unknowns in the entire
solution domain and reduction of the shock speeds to zero, whilst
representing the shock by a plausible shape. If this had been achieved
then the residuals (which are a measure of how well the differential
equation is satisfied in each cell) would have been minimised.

The techniques included minimising a shock speed function via
restricting the shock node movements, shock tracking by including a
tangential component ofthe shock speed, minimum global time-stepping,
tip extrapolation, and the use of artificial viscosity in the tip region
to smear out the disontinuity.

The above techniques were combined with various assumptions which
were used to provide a shock orientation angle, in order to solve for
the unknowns along the shock length, the first assumption being that the
shock is oriented normally to the direction of flow. This was
successful in that convergence of the shock speeds and unknowns was
eventually achieved (see Tables 1 and 2), but the resulting shock shape
was inconsistent with the shock angles, unless its curvature alternated
from positive to negative, which is not plausible.

The second assumption obtained a missing piece of information at
the new time level from the previous time level. This did not help
convergence of either unknowns or shock speeds, and the resulting shocks
were sawtooth shaped, or else the angles were inconsistent with the

positions of the nodes.
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Thirdly the actual node positions were used to calculate the angles
using either unweighted or weighted central differencing of the
adjoining gradients. This resulted in a sawtooth shaped shock, along
which the shock speeds and unknowns would not converge. Also an
unweighted or weighted least squares cubic polynomial was used to fit
the node positions, and provide the shock angles. This was fairly
successful (see Table 6), but a small residual shock speed was always
present which would not converge and neither did the unknowns along the
shock.

In the final set of experiments a hybrid of shock capturing and
fitting was used, to align the mesh so that the shock exactly bisected
all shocked cells, in an effort to minimise the error caused by
averaging across the shock, using the trapezoidal rule. The method was
unsuccessful in its present state, and improvements are required to the
shock detection algorithm, and a conservatively formulated form of
artificial viscosity needs to be used, which together should predict the
shock location more accurately.

A feature which both the normal flow assumption and the variable
switching method have in common is that neither provide any means of
linking the shock angles calculated at the shocked nodes with their
positions. This seems to be an undesirable feature, and in all cases
resulted in a shock shape which was inconsistent with the node angles.

The use of central differencing locally to obtain the shock angles
also appears to be undesirable because it does not take into account the
remaining shock nodes. The only remaining shock fitting method then is
to use a curve of some kind to fit the shock. The curve used here was a

least squares cubic polynomial. Let us now look in detail at the way
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this was implemented.

The shock is treated as an internal boundary, at which boundary
conditions are implemented by using characteristic theory as a guide.
Since we can rotate our axes and equations to align with the direction
of flow at any point in the flow field, we use the characteristic theory

from the simplified undirectional flow unsteady Euler equations.

- T+1 a® -11% 2

The characteristic speeds A are q, [_?] q+ Vv = + [?] q

where q is the flow speed (see [1]), and a is the sound speed.
Hence if q® =a®, A=q, 1%% (q¥2) so A =q , 1;1 a, 0. If

a® < ¢® as in supersonic flow then A = q , positive , positive (since

in this case q > 0) , and if a® > q® as in subsonic flow

A =q , positive , negative. Hence if a® < q® then all three
characteristics head in the same direction as q , but if a® > g then
two characteristics head in the direction of q , whilst one heads in
the opposite direction.

The important factor, as far as imposing boundary conditions on the
shock is concerned, is: does the component of the characteristic speed,
which is normal to the shock, move into or away from the shock. For
this we need to know the normal component of both the shock and flow

velocities. Therefore our relative normal characteristic speeds become

_ v+1 a? v-1)? 2
I e e R
where Ay and S are the normal components of the flow and shock

velocities.

So if a < Ay - S = a® < (qN—S)2 since a > 0 and N >> S
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in this situation. Therefore A = (qN—s) , positive , positive: also

a>qy-s = a® > (qN-s)2 , therefore A = (qy=s) . positive ,

negative, where A is now the relative normal characteristic speed.
Now it can be easily shown that the relative normal upstream and

downstream mach numbers MNL, MNR are given by

iz o () R (1)
T 2y PL 2

MNRZ = (v+l) EL_+ (v+1)

2v P 2

=e)

qN =S

where MNL is defined equal to and PL'PR are upstream and

downstream pressures. Now since the shock is compressive PR 2 PL

= M_2>1 and M

NL 2 NR <1

and since AN S >0 and 9 " S >0 and 2 p >0

== MNL 21 and MNR <1

= Ay, = S > a; and 9w " S {aR .

_ The implication of this argument is that all characteristics from
upstream carry information from upstream into the shock, whilst on the
downstream side, two characteristics carry information away from the
shock into the downstream region, whilst one characteristic carries

information from downstream back into the shock.
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The interpretation of the characteristic theory in the present
method is to update all three unknowns on the upstream side of the
shock, using the numerical method in the upstream solution domain, and
to update only one unknown, chosen to be the density, on the right hand
side of the shock, using our numerical method in the downstream solution
domain. The remaining two unknowns and the shock speed, are then
calculated via the three Rankine Hugoniot jump conditions. However this
is not strictly the correct way to proceed.

Consider what happens to the third relative normal characteristic
speed as the shock tip is approached. On the upstream side the speed
tends to zero from above, and on the downstream side the speed tends to
zero from below. Intuitively this would appear to decrease the
influence which the waves carried by this characteristic have on the
shock. In fact the situation is even more complex. The characteristic
speeds are the eigenvalues of the matrix A , when the Euler equations
gt + Ex + gy = 0 are written in the form Ht + AHK + Bgy = 0 . Here
we ignore the term Bgy since we assume unidirectional flow. Each of
these eigenvalues has an eigenvector associated with it, and this is the
quantity that is travelling with characteristic speed A . The extent
to which this eigenvector influences the shock is dependent not only
upon the characteristic speed, but also on the strength of the
eigenvector. This strength can be assessed explicitly by measuring the
jump in the unknowns at the previous time level (see Roe [4]).

Another point which should be mentioned is that the flow on the
downstream side of the shock at the tip, and for a finite region along
the shock, has the possibility of being supersonic. If the flow is

normal to the shock and for simplicity if we assume S = O , then
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MNR = 1.0 at the tip = 9Yp = 2R - However if there is a tangential
component to the flow then AR Z0 = q§R + q%R > ap implying
supersonic flow. In this case the characteristic speeds in the
direction of flow on the downstream side will be q, positive ,
negative (though the relative normal component of the 3rd
characteristic will always be £ 0).

If we consider a moving shock then the flow upstream may be
subsonic (a shock moving upstream into stationary air) and the flow
downstream may be supersonic (at the shock tip where 9YR S = aR, for
S > 0) . The accompanying overturning of the characteristic speeds in
the direction of flow, is most likely to occur in the tip region where
MNL and MNR are closest to unity. However the relative normal inflow
will always be supersonic, and the relative normal outflow will always
be subsonic, and consequently the relative normal characteristic speeds
will be as described previously.

All of the shock fitting techniques and the hybrid method rely on
adapting the mesh to align a grid line either exactly onto the shock, or
slightly offset from it. Inevitably the mesh becomes distorted, the
extent of which depends upon how curved the shock is, and the number of
shocks present. The accuracy of the cell vertex method is dependent
upon the smoothness of the mesh, and consequently the accuracy of this

shock fitting procedure is limited by the type of shocks present.

FUTURE WORK
There exist three main options for future work. Two have been
selected for development from the previous work, and the remaining

option relies on a new approach.
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The first of the existing methods to be improved is the hybrid
approach, which both captures the shock whilst positioning the mesh so
that the shock exactly bisects the shocked cells, in an effort to
minimise the error due to averaging by the trapezoidal rule. This is
described on page 30, and suggested improvements are set out on page 32.

The second of the existing methods is to adapt the present curve
fitting techniques so that they obey the characteristic theory, as
described in the conclusions on page 37.

Finally the new approach is to add viscous terms corresponding to
the Navier Stokes equations, in a limited area, either to the entire
shocked region, or to the tip region only, whilst representing the
remainder of the shock using one of the existing methods. This can be
quite easily incorporated into the present code by using a finite volume
discretization of the viscous terms as described by J. Mackenzie [5].
The effect would be to smear out the shock increasingly as the shock
becomes weaker. Hopefully this would then allow us to solve the
relevant equations in the shock region without generating the large
errors and consequent oscillations, caused by averaging across a
discontinuity using the trapezoidal rule. However a brief survey of the

theory indicates that the shock width is equal to

8vv vEL + vﬁk
BaL(’Y+1)ML ‘/EL _ ‘/ER

for a normally orientated shock, where VL is the upstream kinematic
viscosity of air q 1is the flow speed. Hence as q 2 dp the shock
width becomes infinite. In air a shock with P, ,P. = 2.0

R/ L
pR/pL =1.625 , ML = 1.363 has a shock width equal to 40 x 10—5 mm, and

a shock with PR/PL =1.2, pR/pL = 1.139 , ML = 1.082 has a shock
width of 190 x 100 MM (Hunt [6]). The latter result is typical of
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the values found at the shock fitting tip. Hence it is only a very
short length of the shock that has an appreciable width. Consequently
an extremely fine grid would be required, in order to see the smoothing
effect. Alternatively unrealistically high values of the viscosity

parameter could be used in order to capture the shock.



[1]

[2]

[3]

[4]

[5]

(6]

- 4] -

REFERENCES
K.W. MORTON & M.F. PAISLEY (1987). A finite volume scheme with
shock fitting for the steady Euler equations. Oxford Univ. Comp.
Lab., report 87/6.
M.G. HALL (1984). Fast multigrid solution of the Euler equations
using a finite volume scheme of Lax Wendroff type. RAE technical
report 84013.
P. SAMUELS (1989). Shock behaviour and diffusion. University of
Reading, Numerical Analysis Report 12/89, pp 110-118.
P.L. ROE (1981). Approximate Riemann solvers, parameter vectors,
and difference schemes. Journal of Computational Physics 43,
357-372 (1981).
J. MACKENZIE (1989). The cell vertex method for viscous transport
problems. Oxford University Computing Lab. Report 89/4.
J.N. HUNT. Shock waves in one dimensional flow. University of

Reading, Dept. of Math., Lecture Notes III.5.



ACKNOWLEDGEMENTS

I would like to acknowledge the help received from Dr. C.M. Albone
of RAE Farnborough as the external monitor, Dr. M.J. Baines for his
constant supervision and guidance, Dr. A. Priestley for specific

technical support, and Mrs S. Davis for the typing of this report.



- 43 -

List of Symbols

IXS

XS(J)
L.R

N,T

Q| |e

>

Density

velocity in x direction
velocity in y direction
pressure

ratio of specific heats

shock orientation angle

shock speed

coordinate directions

time

flow speed

sound speed

viscosity parameter

residual

vertical grid line subscript
horizontal grtid line subscript
I value of shock grid line
shock tip node J value

x coordinate of Jth shock node
Left and right subscripts
Normal and tangential subscripts
Mach number

vector of unknowns

Flux vectors

Characteristic speed
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LTCRATION 20209

I= 3Js  3TUs  2:4aX

1= 373=

5IU=

iy

=9.1333
-3..377

=1.197%

ALl
SEMRLNSISHL
=Jeiénu)
~de. L1433
=J.0211
=%.124%
=%.3975
~JedIT3

> 4

~LlT3s
ALFA=
=2 1534 3L73=
ALTA=
=J.153) ALTA=
RPALE
iLFA=
ALTA=
ilras
ALTA=
ALTas

ALTA=

1.152
1.152
1.150
1.15s5
l. 154
1.155
1.3313
1. 1333
1.313
1."1]
1.4350
1.459

UPDATZ=0.000208727
M5 JPIALE =0.35002152

R4S ISIJVAL =9.00940241

1,000 {teration result

JMAX RESIJUAL=0.11567539

TABLE 4

M
S IS 39 Jus I3 7
T 0.7108 ).7sas -0.1181 ALFA= 1.418
£ L.1504 ),7176 -9.1108 ALFA= 1,418
27 0.7375 9.7359 =2.0867 ALFA= 131.007
S Lalouy L1212 =2.5410 ALFA= 131.007
Y 0,760 3.773u4 =2.0793 ALFA= 1.286
JOL.G312  3.3187  2.0496 ALTA= 1.Jas
= J.7735 00,7957 -90.2599 arTa= 2.154
+1.0222  ),3290 -3.2159 ALFA= l.130
5 9.,4100 23,7969 =07.0529 ALFA= L.lJa
TOL.3983 3.3027 3.3095 MLEA= 1,194
§ 0.3417 3.713977 -J.0435 ALIA= 1,322
3 $.9958  J.73u41 =3.0958 ALFA= 1.322
7 9.8908 00,7973 =3.0467 ALFA= 1.494

LTERATION L0000

I= 33 g= 2 Zu= 2 MAX UPDAIEs

fMS UPOATE 9-.0000S059 '

T= 19 J= 1 IU=:

AMS RESIDUAL = =

S

520.,002112
$=20.072132
5=0.3003137
327.0321137
3=9.C32130
3=20.002117)
3203391255
$20,001255
C==.99701"
3==.,000819
T=-.002527
S==.,3025Q7

-.105094
« 105494
WRERTE
P Lt 21
+115213
+115213
« 243700
283700
087039
+1370139
=-,099u 76

==,43093476
§5==,069152
S==.069152

U VU VOO [t T (T (| [ (I |
[ | [ |

o) vl el Wl B0 WL LW

L
1
i

0.00123765
3-MAX RESIDUALz sussssssswe

ML XS

"Le 1,158 ¥3=9.771"
“L= 1,359 (S=9, 77~
L= 1.322 vs=0.77:
ML= 1,322 ¢5=20.773
I'L= 1,258 ¢S=0,75%
L= 1.255 XS=29.75¢
4lT 1,298 {S=20.7¢%2
ML= 1,295 rS=90.7%5%
ML= 1,152 vs$=9,71p
“L= 1.152 vs=0,748
L= 1.038 (S=20.631
ML= 1,036 X8$=20,.,6913

M
ML= 1,353
“L= 1.359
“L= 1.239
ML= 1,239
ML= 1.228
Y= 1,179
ML= 1,173
ML= 1,133
L= 1.133
ML= 1.133
ML= 1,508
ML= 1.083
ML= 1,268

using one sided difference to calculate shock angies.

XS

¥{S=0.63
¥S=20.6%
XS=0.66
X¥S=0.66
{S=0.69
XS=0.69
¥S=0.67
{S=0.67
XS=20.6%
¥S=0.6%
{S=20.65
XS=20.65
XS=0.68
XS=0.65



TABLE b

SAQCK ANGLES CALCULATED US

AND AVERAGING GRADIENT EITHER SIDE OF EACH NODE.

£ e e & 5
X3 I3 313 Jus I3 7
2«7732  3.7592 -9,1110 3LFA= 1.326 $=0.066627
J.8086 3.7512 -9.1113 ALFA= 1.426 3=0.066627
247315 1.7620 -1.1122 SLTA= 1.573 3=0,045473
248159 3.763L -9.1157 ALFA= 1.5731 $=0.085078
0.8107 0.7760 -0.1040 ALFA= 1,5u9 5S=0.08%965
0.8280 1.7763 -0,.259 ALFA= 1.549 5=0.045965
0-8438 0.7850 -0.1001 3LFA= 1.526 5=0.016809
0.85%8 0.78%2 -9.1013 ALFA=

1.526 5=0.016809
08790 0.7915 =0.3964 ALFA=

L.518 S==,016525%
0.8917 0.7913 -0.0972 ALFA= 1.518

S==.016528
0.9129 0.7966 -0.9916 ALFA= 1.506 S=-.0867338
0.9212 0.7962 -0.0920 ALFA= 1.506 S=~.087338
0.3376 0.7986 -).J880 ALFA=

1.509 S==,070032
0.9410 2.7984 -0,.3841 ALFA= 1,509 3==,070032
[TERATION 5

L 0.5289 0.7258 =-0.1213 ALFA= 1.40%
0.9932  0.7371 -9.1231 ALFA= 1,405 3=0,031217
0.6625 0.7820 -0.0975 ALFA= 1.616

o

L

2

i}

3

4

1}

5

5

1

[

1

7

1

2 3=0,001029
4 0.9998 J.7452 -0.1620 ALFA= 1,616
3

]

4

5=0.031217

5=0.001029
0.7053 0.7663 -0.1033 ALFA= 1.557 $=0.020886
J.9725  0.7723 -0.1335 ALFA= 1.557 5$=0.02u806
0.73108  1.7699 -0.3382 ALFRA= 1.735 S=0.00004S
0.9278 0.7794 -0.1451 ALFA=

4 1.736 3=0.0000u45
S 92.7312 3.7754 -5.3881 ALFA= 1.531
S
3
by
7
T

3=0.0161258
0.9213  J.2011 -0.1192 ALFA= 1,331 S=0.01612%5
0.3090 0.7735 -0.J754 ALFA= 1,775 5==.,010125
J.3910  Z.7976 -2.0989 ALFA= 1.77S 5s=-,01012¢%
0.4482  ).3097 -2.3755 ALFA= 1.3500 $=0.,001304
d.9153 1. 3047 -4,2757 ALTA= 1.300 3=0,001704

~e=RATIZN 500
S T3 33 TAs I3 *

2.6272  C.7211 -9.1109 ALFA= 1.31)1 5=0.023127
0.9721  3.7311 -9.1327 \LFA= 1,391 S=0.027127
1. 6600 0.7%15 -9.3331 ALTA= 1,500 3$=-,003143
L0321 2.7423 -9.1600 ALFA= 1.500 5=-.003148
047321 3.7553 -0.1239 \LFA= 1,564 3=0.013722
0.3943 29,7597 -a,1L4u7

ALEA= L.544 5=0.018712
0.72%7  3.7570 =0.3399 ALFA= 1.747
0.92313  2.7777 -43.15239
3.7732 ‘.70

2.3231 2. 0067

5==-.0003713
ALTA= 1.T747 S=-,0001373
=2.3370 ALFA= 1.379 3=0.013499
=941234 ALFA= 1,537 3I=0.C1]un2
003913 1.732% -9.3731 \LFA= 1,125 T==.000323
9.35)2  1.7374 -0,)917 ALFA= 1.3325 3=-.000829
0.6371 24313931 -9.0743 3LFA= 1.315 i=0.3044892
0.3193  J.A3104 -3.0724 ALFA= 1.18S 5=0.00u4992
ITERATION . 200
= 13 = 5 Iu= Z MX UPDATE= ).30013642
AMS UPDATE = 9,30002959
= 37 J= 1 IU= J MAX RESIDUAL= 0.19682130
AMS RESIDUAL = 0,.01618513

FURNURN U B L - s bt B e X

TABLE 6

Besat results obtained using least

squares cubic with
iteracions.

ITERATION 4920
IXS IS 39 JMS IS 6

Mo

=
MY =
IA,I_:
ML=
uL=
l4L=
YL=
ML=
ML=
L=
ML=
“i=
ML=
L=

“im
ML=
YL=
ML=
ML=
ulL=
ML=
ML=
=
e =
ML=
\IL’
AV =
“es

ML=
ML=
ML=
vl =
=
uf =
ML=
A=
|"-=
s
wi=
nL=

ur =
-

ING ACTUAL P0SITISNS CF MODES

L.223
.33
l.013
L.018
1.3813
1.313
1l.311
1.011
1.309
1.099
1.00%
1.008
1.002
1.002

1.338
1.3318
1.239
1.238
1.322
1.221
1.159
1.157
L. 136
1.135%
1.350
L.330
1.315
.18

1.119
1.313

1.301.

1.301
1.218
1.238
l.151
L.131
L.133
Lell3
L.343
L.2313
L.d156
1.315

XS

{S=0.63
{S=20.63
{S=20.53
XS=0.68
XS=0.68
XS=20.58
XS=0.68
XSIO. (1]
XS=0.69
X8S=0.469
XS=20.69
XS=20.69
XS=0.69
XS=0.59

XS=0,71
XS=20,71
XS=0.68
XS=0.68
XS80,70
XS=0.70
XSa20.638
XS=0.68
£S=0.49
£S30.59
XS=0.67
XS=0.67
XSz20.67
£S=20.67

XS20.71
¥S=20,73
XS=0,51
¥S=20.68
XS=20.72
XS=0,72
XS=20.53
XS=0.68
%S=9.73
¥S=0,79
vS=0.467
{(S=20.67
(S20,53
X520.53

mulcigrid afcer 5,000

. 0.7159 -0.1160 ALFA= 1.810 S=0.001368 ML= 1,396 XS=0.708
i g.ggtg 0.7165 -0.1160 ALFA= 1.810 S=0.001364 ML= 1.396 XSfO.708
2 0.6836 0.7356 -0.1089 ALFA= 1.511 S$=-.002370 ML= 1.387 XS:0.712
2 1.0286 0.7328 -0.1473 ALFA= 1.511 S=-.002370 ML= 1.387 XS:0.712
3 0.6782 0.7526 -0.1018 ALFA= 1.595 S=-.003317 ML= 1.281 XS:0.712
3 1.0059 0.7530 -0.1599 ALPA= 1.595 S=-.003317 ML= 1.281 XS:0.712
4 0.7171 0.7712 -0.0982 ALFA= 1.669 5=0.003879 ML= 1,208 XS=0,710
4 0.9669 0.7701 -0.1583 ALFA= 1.669 5=0.003879 ML= 1.208 XSfO.710
S 0.7618 0,7839 -0.0914 ALFA= 1,728 S=-,001158 ML=z 1.128 XS=0.705
5 0.9264° 0.7910 -0.1371 ALFA= 1.728 S=-.001158 ML= 1.128 XS5=0,70S
6 0.8098 0.7992 -0.0913 ALFA= 1.768 S=-.005255 ML= 1.061 XS=0.697
6 0.8935 0.8038 -0.1163 ALFA= 1.768 S=-,005255 ML=z 1.061 XS=0.697



TABLE 7 (17 x 65 grid)

b, = 0.005 u, = 0.01
XS(1) = 0.7253  YS(1) = 0.0803 | XS(1) = 0.6844  YS(1) = 0.0869
XS(2) = 0.7246  YS(2) = 0.1118 | XS(2) = 0.6836  YS(2) = 0.1182
XS(3) = 0.7243  YS(3) = 0.1455 | XS(3) = 0.6839  YS(3) = 0.1516
XS(4) = 0.7261  YS(4) = 0.1816 | XS(4) = 0.6861  YS(4) = 0.1874
XS(5) = 0.7202  YS(5) = 0.2202 | XS(5) = 0.6892  YS(5) = 0.2258
%S(6) = 0.7058  YS(6) = 0.265¢ | XS(6) = 0.6932  YS(6) = 0.2670
XS(7) = 0.6897  YS(7) = 0.3124 | XS(7) = 0.6968  YS(7) = 0.3116
XS(8) = 0.6958  YS(8) = 0.3601
UPDATE) _ -7 UPDATE] _ -8
RS [ e } = 2.0 x 10 RMS ‘}—Tﬁr-} = 2.0 x 10
u, = 0.02 ny = 0.03
XS(1) = 0.6870  YS(1) = 0.0865 | XS(1) = 0.6868  YS(1) = 0.0865
XS(2) = 0.6869  YS(2) = 0.1177 | XS(2) = 0.6875  YS(2) = 0.1176
XS(3) = 0.6870  YS(3) = 0.1512 | XS(3) = 0.6880  YS(3) = 0.1510
XS(4) = 0.6886  YS(4) = 0.1870 | XS(4) = 0.6893  YS(4) = 0.1869
XS(5) = 0.6907  YS(5) = 0.2256 | XS(5) = 0.6910  YS(5) = 0.2255
XS(6) = 0.6930  YS(6) = 0.2669 | XS(6) = 0.6942  YS(6) = 0.2669
XS(7) = 0.6971  YS(7) = 0.3115 | XS(T) = 0.6976  YS(7) = 0.3115
UPDATE) _ 8 UPDATE] _ -7
RMS [ or ] - 5.0 x 10 RMS [ oA ] - 1.3 x 10
b, = 0.04 uy = 0.013
XS(1) = 0.6865  YS(1) = 0.0866 | XS(1) = 0.6858  YS(1) = 0.0867
XS(2) = 0.6873  YS(2) = 0.1176 | XS(2) = 0.6856  YS(2) = 0.1179
XS(3) = 0.6877  YS(3) = 0.1511 | XS(3) = 0.6859  YS(3) = 0.1513
XS(4) = 0.6891  YS(4) = 0.1869 | XS(4) = 0.6877  YS(4) = 0.1871
XS(5) = 0.6909  YS(5) = 0.2255 | XS(5) = 0.6904  YS(5) = 0.2256
XS(6) = 0.6945  YS(6) = 0.2669 | XS(6) = 0.6939  YS(6) = 0.2669
XS(7) = 0.6765  YS(7) = 0.3138 | XS(7) = 0.6971  YS(7) = 0.3116
RMS [Upg%m] =2.3x%x 1077 RMS [UPDATE] -2.0x 108

DT



By = 0.01

XS(1) = 0.7027 YS(1)

XS(2) = 0.7034 YS(2)

XS(3) = 0.7033 YS(3)

XS(4) = 0.7033 YS(4)

XS(5) = 0.7033 YS(5)

XS(6) = 0.7036 YS(6)

XS(7) = 0.7040 YS(7)

XS(8) = 0.7048 YS(8)

XS(9) = 0.7060 YS(9)

XS(10) = 0.6963 YS(10)
XS(11) = 0.6872  YS(11)
XS(12) = 0.6891  YS(12)
XS(13) = 0.6905 YS(13)
XS(14) = 0.6912 YS(14)
RMS FUngfE] =3.3x

My = 0.03

XS(1) = 0.6865 YS(1)

XS(2) = 0.6867 YS(2)

XS(3) = 0.6865 YS(3)

XS(4) = 0.6868 YS(4)

XS(5) = 0.6869 YS(5)

XS(6) = 0.6869 YS(6)

XS(7) = 0.6872 YS(7)

XS(8) = 0.6874 YS(8)

XS(9) = 0.6877 YS(9)

XS(10) = 0.6881  YS(10)
XS(11) = 0.6880  YS(11)
XS(12) = 0.6735  YS(12)
XS(13) = 0.6739  YS(13)
XS(14) = 0.6748 YS(14)
RMS FnﬁﬁqE] =1.2x

TABLE 8 (33 x 129 grid)

YO R | U U | NN I | A N | N [ [
OOOOOOOOOOOO

TR W | PO | | A T | N [ A | i u

.0841
.0997
.1159
.1327
.1502
.1682
.1868
.2061
.2261
.2481
. 2702
.2088
0.3157
0.3396

0.0866
. 1022
.1184
.1351
. 1525
.1705
.1891
.2084
.2284
.2490
.2723
.2845
.3174
0.3412

O 00O 0O o0 o o o o o o o

XS(1)
XS(2)
XS(3)
XS(4)
XS(5)
XS(6)
XS(7)
XS(8)
XS(9)

XS(10)

XS(11)

XS(12)

XS(13)

XS(14)

Xs(1)
XS(2)
XS(3)
XS(4)
XS(5)
Xs(8)
Xs(7)
Xs(8)
Xs(9)
XS(10)
XS(11)
XS(12)
Xs(13)
XS(14)

Hy = 0.02
= 0.7021  YS(1)
= 0.7027  YS(2)
= 0.7027  YS(3)
= 0.7029  YS(4)
= 0.7031  YS(5)
= 0.7035  YS(6)
= 0.7045  YS(7)
= 0.695¢  YS(8)
= 0.6877  YS(9)
= 0.6883 YS(10)
= 0.6891  YS(11)
= 0.6903  YS(12)
= 0.6758  YS(13)
= 0.6768  YS(14)
RMS E”EBQTE] B
ul = 0.04
= 0.6863  YS(1)
= 0.6864  YS(2)
- 0.6863  YS(3)
= 0.6866  YS(4)
= 0.6868  YS(5)
= 0.6870  YS(6)
= 0.6872  YS(7)
= 0.6875  YS(8)
= 0.6878  YS(9)
= 0.6885  YS(10)
= 0.6739  YS(11)
= 0.6741  YS(12)
= 0.6749  YS(13)
= 0.6758  YS(14)
RMS FE%%EE

O 00000 0 0 0 0 0 O O O

1.9 x

O 0O 0O 0O 00O OO0 0O o o o o o o

] = 3.2 x 10

.0842
.09s8
.1160
.1328
. 1502
. 1682
. 1868
.2074
.2284
.2491
.2705
.2927
.3173
.3411

1072

.0866
.1022
.1184
. 1352
. 1525
. 1705
.1891
.2084
.2284
.2491
L2722
.2944
.3174
.3412

5



Grid position 1
XS(1) = 0.6878

XS(2) = 0.6874
¥S(3) = 0.6873
XS(4) = 0.6689
xS(5) = 0.6907
XS(6) = 0.6936
XS(7) = 0.6966

Grid position 2
XS(1) = 0.7063

xS(2) = 0.7072
XS(3) = 0.7076
XS(4) = 0.7103
XS(5) = 0.7144
XS(6) = 0.6966
XS(7) = 0.6864

Grid position 3
XS(1) = 0.6941

XS(2) = 0.6951
XS(3) = 0.6957
XS(4) = 0.6990
XS(5) = 0.7062
XS(6) = 0.6961
XS(7) = 0.7125

XS(2) = 0.7195
XS(3) = 0.7206
XS(4) = 0.7252
XS(5) = 0.6941
XS(6) = 0.6902
XS(7) = 0.7044
XS(8) = 0.7071

TABLE 9

Grid position 5
XS(1) = 0.7081

XS(2) = 0.7098
XS(3) = 0.7121
XS(4) = 0.7183
XS(5) = 0.7139
XS(6) = 0.7162
XS(7) = 0.7061

Grid position 6
XS(1) = 0.6992

XS(2) = 0.7005
XS(3) = 0.7035
XS(4) = 0.7109
XS(5) = 0.7094
XS(6) = 0.7130
XS(7) = 0.7067
XS(8) = 0.7282

XS(2) = 0.6906
XS(3) = 0.6945
XS(4) = 0.7033
XS(5) = 0.7042
XS(6) = 0.7095
XS(7) = 0.7058

Grid position 8
XS(1) = 0.7192

XS(2) = 0.7192
XS(3) = 0.7245
XS(4) = 0.6937
XS(5) = 0.6974
XS(6) = 0.7047
XS(7) = 0.7059
XS(8) = 0.7077

Grid position 8

XS(1) = 0.7090

XS(2) = 0.7119
XS(3) = 0.7210
XS(4) = 0.7207
XS(5) = 0.7298
XS(6) = 0.7090
XS(7) = 0.7087
XS(8) = 0.7431

Grid position 10

XS(1) = 0.8618

XS(2) = 0.7073
XS(3) = 0.7163
XS(4) = 0.7167
XS(5) = 0.7144
XS(6) = 0.7268
XS(7) = 0.7169
XS(8) = 0.7618




