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Introduction

In applying Roe’s scheme, a time—accurate characteristic based
method, Roe (1981) to the flow around an aerofoil, a projectile or a
re—entrant vehicle for example, there are three options concerning the
grid.

Firstly the physical space can be transformed so that the body
becomes a rectangular block in the transformed space. A Cartesian grid
can then be used in the transformed space and Roe’s scheme can then be
used to solve the transformed equations, see Glaister 1988. This
approach has problems, though, in that the transformation can be very
expensive to calculate for non-regular three-dimensional shapes and the
equations themselves become more complicated to solve.

Secondly, using a body fitted mesh for example, we can work in
physical space but on a non-Cartesian mesh. There is still the problem
of how to generate the mesh, but one of the advantages of this approach
is that an adaptive mesh refinement/enlargement could be incorporated.
Again, though, more work is needed at each point to rotate the Euler
equations in the directions normal and tangential to local cell
interfaces. It is also not immediately clear how to achieve second
order accuracy for this scheme. See Chakravarthy & Osher (1985), and
Barley (1989) concerning this approach.

Thirdly, a Cartesian mesh can be used in physical space. Clearly
this has advantages in that no grid information needs to be stored,
schemes revert to their simplest form and the passing of information
between regions of fine and coarse mesh is straightforward. Also the
schemes generally become easily vectorizable. The difficulty is in
modelling the rigid wall. In recent years Cartesian meshes have

regained some favour and not just for characteristic based



methods. (See Clarke et al (1986), Leveque (1988), Moretti & Dadone
(1988) for some recent work) and it is this approach that will be
considered here.

In the next section we will describe how the rigid wall boundary
conditions are applied and the advantages & disadvantages over the
approach of Leveque (1988) are discussed.

In Section 3 results will be presented for the two—-dimensional
double ellipse problem that show the method to be a very accurate and
robust proposition. Difficulties, when using Roe's scheme, caused by
slow moving shocks as they near steady-state, see Roberts (1988), were
found to occur and a crude, but effective, solution was implemented.
Methods for improving convergence rates will also be discussed briefly.

Finally a summary of the work is given.



2. Rigid Walls in Three Dimensions

The application of reflecting boundary conditions becomes a much
simpler problem if the rigid wall is a flat plane. Indeed, this is what
is done here: the (curved) surface is replaced by a set of flat planes.

In an obvious notation consider the point (i,j.k) at the centre of
a block of 27 points {(i-1, i, i+l ; j-1, j, j+1 ; k-1, k, k+1)} . We
shall assume that we have certain information available to us concerning
the body surface. The functions in the procedure are as follows:

1) A boolean function INSIDE (x,y,z) that given a point in space

returns a value of .TRUE. or .FALSE. according to whether the

point is within the body or not.

2) A function z(x,y) that, given a point (x,y), returns the

value of z that lies on the surface.

3) Functions gZL%;Xl. and QEL%;II that return derivatives of
the above function.

4) Similarly defined functions x(y.z), y(x.z). g%“ gg, gﬁu g% .

In the case of the double ellipse problem for which results will be
presented later, there are analytic formulae for these functions. In a
more general case where the body is defined by a set of points on the
boundary they can de derived from a cubic spline fit of these points for
example.

The procedure is now as follows.

(a) If the point, (i,j.k), does not lie inside the body, then

get the next point, else go to (b).



(c)

(b)

(d)

Given that the point (i,j.k) lies inside the boundary test
to see if the point is a boundary point. This is done by
looking at the three pairs of points

{Xi—l’ Xi+1}' {yj_l, yj+1} and {Zk—l’ zk+1} . If there
exists a pair for which one point is inside and the other
outside, then the point (i,j.k) is a boundary point and we
proceed to (c). If, for all 3 pairs, both points are either
inside or outside, then the point is not on the boundary.
Find the plane that locally approximates the surface. Let us
assume that it was the {Zk—l' zk+1} pair that satisfied the

criterion of (b). The general equation of a plane is
ax + by +cz+d =0

and we can immediately put c¢ = -1 (so that z = z(x.,y) .

The parameters a and b can be found straight away from the
functions 8z/8x and 08z/8y . The value of d can also be
calculated although it is not actually needed.

From the normal to the plane, given by (a.,b,c), find a value,

s, such that the point T, say, with coordinates

(xi, yj, zk) + s(a,b,c)

lies on the surface of the cube centred on the point

(i,j. k) . This gives us the place from which the values



of (p,u,v,w.,p) are interpolated in order to apply the
reflection conditions.
Then, using a corresponding suffix T,

Pi.j. k= Pr (2.1a)

pi,j,k = Pp - (2.1b)
For the velocities only the normal component is reflected, the

tangential components remaining unaltered. To resolve into normal and

tangential components at the point T we need to solve

a 1 1 a u

b -a/b b/a B | = v (2.2)
a b2

B 0 =5 = = Tdr NV

Denoting the matrix in (2.2) by A, the normal and tangential

components at T are then given by

oy = A Up - (2.3)

To reflect the normal vector and hence obtain the normal and
tangential components at (i,j,k) we multiply equation (2.3) by a
matrix D to get

n. = DA~ up (2.4)

where D = -1 0 0



To return to velocities in x,y,z space we now just need to
multiply (2.4) by A, so that the final equation for the velocities
at (i.j.k) is

-1
=ADA U - (2.5)

Y 5.k

Evaluating A D A—1 in (2.5) explicitly gives

g ] - 22 _ 2ab _ 2ac 5
R R R
2ab 2b? 2b
v = - 1--—R ik v (2.6)
- _ 2ac _22c 2% .
LY 4,50k TR R R - T

where R =a® + b%? + c® .

The main difference between the method described here and that of
Leveque (1988) is that of ease of application versus flexibility of
application. This procedure is certainly very simple. Only the
points T have to be found, which is quite straightforward, and then it
is a trivial matter to update points on the boundary from formulae (2.1)
and (2.6). This means that we can perform Roe’s scheme in the same way
at all points.

Leveque’s procedure does not use ’imaginary’ points and literally
reflects waves hitting the rigid wall, spreading the flux associated
with the wave over the area swept out by the wave. This is certainly a
more complicated procedure and involves much logical testing to see if a
wave is going to impinge upon the boundary. The significant advantage

of Leveque's (1987) approach is when it is required to work with larger



CFL numbers, as we might well want to consider doing if iterating
towards steady-state. Leveque's approach can cope with this situation
at no extra cost whereas when imaginary points are used, as in the
present proposal, more imaginary points need to be introduced and some
may need to be doubly defined. Whilst there is no reason why this

cannot be done it is certainly not such a neat and tidy approach.

3. Results
The double ellipse problem is a GAMM workshop test case and is
defined below.

Lower Surface:

y = - 0.015 0 < x <0.016

y = -0.015 V 1—(6—§§)2 -0.06 < x O
Upper Surface:

y = 0.025 0 < x < 0.016

y =0.025 vV 1-(5o35)° X {x<O0

y = 0.015 V 1-(57g)° ~0.06 { x { X

where x = - 0.029890588.

The problem of using a Cartesian mesh and having sufficient
resolution around both the body and important flew features whilst at
the same time having a mesh that reaches the farfield boundary as
quickly as possible is overcome by using a succession of overlapping
Cartesian meshes. For this problem four meshes were used. No claim is
made that the best nesting of meshes has been used; a finer mesh would

have been useful to resolve the flow near the canopy shock and would



also have been beneficial at the nose in the 0° incidence case, while
the coarsening of the meshes would probably be done more rapidly.
However, the solutions obtained are perfectly adequate to demonstrate
the approach.

The two flow regimes for which results are presented both have
freestream Mach numbers of 8.15, the first having an angle of attack of
0° and the second of 30°. Figures 1-4 show density (p/p,) and Mach
numbers contours for both cases. It should be noted that these
calculations have not yet fully reached steady-state.

The problem described by Roberts (1988) of noise generated behind a
near stationary shock in Roe’'s scheme first caused severe distortion of
the bow shock near the nose of the body in the 0° case. This has been
overcome by the inclusion of a small amount of diffusion which is
however not enough to make any noticable changes to the shock thickness.
Ideally we would have liked to incorporate the diffusion explicitly, in
keeping with the explicit nature of Roe’s scheme. However, solving with
the diffusion calculated explicitly by the formula

U‘J?*l = (1-vd_ + k6%)U] (3.1)
is well known to reduce CFL stability limits. Here v 1is the CFL

number, k the coefficient of diffusion, and

O

N
a
11

U. - 20U, + U,
J j+1 J J-
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Typically this problem is overcome by treating the diffusion

implicitly, as in
(1 - kéz)U?+1 = (1)U} (3.2)

This, however, involves a matrix inversion and hence considerably more
work. A third approach that requires no more work than (3.1) is to use

a predictor—-corrector approach and to solve
* n
Uy = vA_)Uy (3.3a)
U?+1 = (1+ kéz)U§ . (3.3b)

Although equations (3.3) require no more work than (3.1) they give
good stability because they represent a first order approximation to the
solution of the implicit equations (3.2).

Figures 1-4 were all calculated from an initial state in a
time-accurate fashion. This is not a particularly efficient means of
reaching a steady-state solution and Sells (1980), Priestley (1987) have
discussed means of increasing the convergence rate of Roe’s scheme in
these situations based on local and regional time-stepping, which can
dramatically increase the convergence rate. Local time-stepping would
be of particular use here behind the bow shock where the maximum CFL

number is less than 50% that of the global maximum.

4. Summary

In this paper an effective and cheap means of enforcing reflecting
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boundary conditions has been presented that facilitates the use of Roe's
scheme on a Cartesian grid in a very straightforward manner. Results on
a double ellipse problem have been presented to demonstrate that the
method produces good solutions. Previous work on time-accelerating
techniques suggests that when these techniques are incorporated steady

state can be achieved in a very efficient manner.
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Fig. 1 Density 0° case. En route to steady-state



0~ case. En route to ste









