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ABSTRACT

An efficient algorithm based on flux difference splitting is
presented for the solution of the three-dimensional Euler equations of
gas dynamics in a generalised coordinate system with a general equation
of state. The scheme is based on solving linearised Riemann problems
approximately and in more than one dimension incorporates operator
splitting. The algorithm uses a local parameterisation of the
equation of state and as a consequence requires only one function
evaluation in each computational cell. The scheme has good shock
capturing properties and the advantage of using body-fitted meshes.
Numerical results are shown for Mach 8 flow of 'equilibrium air’ past a

circular cylinder.

KEYWORDS
Euler equations, Riemann solver, Body-fitted coordinates,

Parameterisation of the equation of state.
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1. INTRODUCTION

In 1981 Roe [1] proposed an approximate (linearised) Riemann
solver for the solution of the three-dimensional Euler equations in
Cartesian coordinates with an ideal gas. A similar scheme was
proposed by Glaister [2] for the Euler equations in Cartesian
coordinates with general convex equations of state. A disadvantage of
Glaister's scheme is that four function evaluations are required in
each computational cell to approximate the first derivatives of the
equation of state. For complex equations of state, e.g. curve fits
for equilibrium air [3] this can prove to be an expensive overhead.
We seek here to devise a scheme that requires only one function
evaluation in each cell with no deterioration in the quality of the
solution. This 1is achieved by a local parameterisation of the
equation of state, in effect a 'variable effective gamma’ (VEG) scheme.
Furthermore, the proposed scheme applies to a generalised coordinate
system, and when incorporated with operator splitting leads to an
efficient algorithm that has good shock-capturing properties and the

advantage of using body-fitted meshes.

In 82 we consider the Jacobian matrix of one of the flux functions
for the Euler equations in a generalised coordinate system, and in §3
derive an approximate Riemann solver for the solution of these
equations. Finally, in 84 we give the numerical results achieved for

a two-dimensional test problem using the scheme of §3.
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2. EULER EQUATIONS

In this section we state the equations of motion for an inviscid,
compressible fluid in three dimensions in terms of three generalised
space coordinates. We also give the eigenvalues and eigenvectors of

the Jacobian matrix of one of the corresponding flux functions.

2.1 Equations of flow
The three-dimensional Euler equations for the flow of an inviscid,
compressible fluid can be written in generalised coordinates §, 71,

as (see Appendix C)

(Jz)t+,13§+§,n+§g = 0. (1)
where
T
¥ o= [p- pu, pv. pw, e] (2)
, T
E(w) = [pU. J°.§fp+puU. J‘E’p+va. Jg+ewy. U(e+p)] (3)
. T
G(w) = [pV. J:;p+puv. J1y7p+pVV. J_np+pwV. V(e+p)] (4)
T
H(y) = [pW, J’Ep+qu. JZ-’p+va. J§p+pr- W(e+P)] (5)
e = pi+ %p(u® + v? + w?) (6)
and
U = JSu+ J%’v + JEw (7)
V=Jf?u+JTy_’v+JTz]w (8)
W = J?u + ng + jEw . (9)
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The Jacobian of the grid transformation x=x(§. n. ) .
y=v(E. 1 C) . z=12z(E, n., §) from Cartesian coordinates

(x, y. z) to generalised coordinates (£, 1, {) 1is given by

Y5 %
J = X Yo | (10)

X

whilst the cofactors of this matrix are represented by JE etc. The
cofactor of xn is given by

with similar expressions for Jg etc. The quantities
(py u, v, w, p, i, e) = (p, u, v, w, p, i, e)(E€,. n. {. t) represent

the density, velocity in the x,y and 2z coordinate directions,
pressure, specific internal energy and total energy. respectively, at a
general position §, 1, { 1in space and at time ¢t . In addition we

have an equation of state of the form

p = p(p. 1) . (12)

2.2 Structure of the Jacobian matrix

We now give the Jacobian matrix of the flux function F(w) . and
its eigenvalues and eigenvectors, since this information, together with
similar information for the Jacobian matrices of G(y¥) and H(y) .

will form the basis for the approximate Riemann solver.
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GF
The Jacobian matrix A = v of the flux function F(w) is given

~s

by
X y z
0 Jf Jf JE 0
R y _ z _ x
RJg -ul U+ uSJ? ulg vTJ’E‘ ulg - WIJg TJ’E‘
- Yy _ X _ y y z _ y y
A= RJE vU va uTJE U+ VSJE VJE wTJ§ TJ§ (13)
z _ X _ z y _ Z Z z
RJE wU wa uTJE WJE vTJE U+ wSJf TJE
U(R-H) HJX - wT HF - vUT HJZ - wUT U+ UT
| § § § |
where for convenience we have written
P
R = a® - L (H-q) . (14)
Py
S = 1- 5 8 (15)
p
T = p—i (16)

The fluid speed q , enthalpy H and sound speed a are given by

a® = u®+ v+, (17)
H = %+i+%q2, (18)
and
a® = 221-+ P . (19)
p? &

p

and the quantities P;. P denote the derivatives g?{p, i)
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gﬁ{p. i)

1

A = UxaD, U, U, U

1,2,3,4,5

with corresponding linearly independent eigenvectors

X y VA
r aJ aJ aJ
_ _£ _£
91.2 = .1. ut D Vv - —ﬁi, w t D
- pp AT
g3 - .1' u, v, w, %% + i ~ E;E]
e - Fb -y Jx 0 va - uJy]T
o il e = " HE £
and
s = [0 - JZ 0. E i - wiE]
where

, respectively. The eigenvalues of A are given by

o (G

§ § 3

7

(20a-e)

(21e)

(22)

Similar results hold for the Jacobian matrices of G(x) and H(w) .

In the next section we develop an approximate Riemann solver based

on the results of this section.

3.  APPROXIMATE RIEMANN SOLVER

In this section we derive an approximate Riemann solver for the

solution of equations (1)-(12).
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We propose solving equations (1)-(12) using operator splitting,

i.e. we solve successively

(Jﬂ)t i EE = 0 (23a)
(W, *+§, = 0 (23b)
(Ju), + gg = 0 (23c)
along £, m and { coordinate lines, respectively. We describe the

scheme for solving equation (23a) and the solution of equations (23b)

and (23c) will follow in a similar way.

3.1 Parameterisation of the equation of state

The equation of state for an ideal gas is given by
p = (v1)pi (24)

where ~ is a constant and represents the ratio of specific heat
capacities of the fluid. Following this, for a general equation of

state p = p(p, i) we define a new dependent variable ~ = v(p, i) by

r(p, i) = p(p.i) , 1 (25)

= pi

so that the equation of state (12) can be rewritten as
P = [T(p. i) - 1] pi . (26)

(Many equations of state for real gases are already given in the form

of equation (26). The ideal equation of state is given by

v = constant.)
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From equation (25), the eigenvectors g 9 of equations (2la-b)

can be rewritten in terms of ~ as

aly aJy aly T
e g 99] . (27a-b)

P +%q2iD

D' (v1)p

31'2 = [1. u

In particular, for the ideal equation of state (25) the sound speed a

is given by equation (19) as

a® = B, (28)

and the fifth component of g3 given by equation (2lc), becomes %q°®

PP
since 1 _,_E=o .
Py

3.2 Linearised Riemann Problem
If the solution of equation (23a) is sought along a § coordinate
line given by n = Mo = (o , constants, using a finite difference

method then the solution is known at a set of discrete mesh points

(. n. C, t) = (Ej' Mo CO' tn) at any time tn . Following
Godunov [4] the approximate solution gl:; to w at (EJ.. Ny Eo. tn)
can be considered as a set of piecewise constants ¥ = ggl for

Ee[fj—%f-. §j+éj-] at time tn. where AE:EJ—EJ_I is a

constant mesh spacing. A Riemann problem is now present at each
interface =% + £, separating adjacent states wl} ; wr.1 .
We consider solving the linearised Riemann problem
Yl.n n
(Ju), + A[y._l. ﬁj]ﬁf = 0 (29)

where Aj—% = A[w?_l. El;] is an approximation to the Jacobian matrix A

L



- page 10 -

and is a constant matrix depending on the states either side of Ej-% ;

The matrix Aj—% will be required to satisfy the following properties

(1) Aj—% has five linearly independent eigenvectors
and

o

(ii) AE = Aj_%Aﬁ .

These properties were shown by Roe [1] in the ideal gas case in
Cartesian coordinates to guarantee conservation and have good

one-dimensional shock-capturing properties.

3.3 Numerical scheme
Once such a matrix has been constructed equation (29) can be

solved approximately as

(wn+1 -w) . (W - ¥°,)
J ~k ~k7 L A ~3 M3 0 (30)
j-% At J—%4 AE ~
where k can be j-1 or j ., At = tn+1 - tn is a constant time step
and Jj-% is an approximation to the grid Jacobian at
(8. n. Q) = (Ej_%. Ny {o) - I1f we project
5
n n ~
by = ":"j BRATS zaizi (31)
i=1
where Ei are the eigenvectors of Aj-% then equation (30) can be
written as
5
n+1 2 ALy
(¥ N

n

- %)
M~ M)
B Ry T (32)
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where Xi are the eigenvalues of Xj-% . Equation (32) now gives

rise to the following first order upwind algorithm

n+1 n At v~~~ L
-1 = Xy JJ_%AE Aiaigi if A; <O (33a)
or
n+l n At g~ oo
¥ = ¥ - Jj-%ﬁg AiaiEi if Ai > 0. (33b)

Extensions of this first order algorithm to second order can be

made [5] and to non-uniform grids [6, 7].

3.4 Grid generation and grid Jacobian
The purpose of this paper is to present an efficient Riemann
solver for use with non-Cartesian body-fitted coordinates. The

mapping from physical (x, y, z) space to computational (§, n, ()

space can be given analytically, or constructed numerically [8]. In
the case where the mapping x=x(E. n C) . y=y(§. n. ) .
z =z(E, n. () is known analytically we can approximate Jj-% in

equation (30) as

alternatively, Jj-% can be approximated using central; differences.

-4

In addition, we will need a suitable approximation xn for x_at

n
(§. ., Ny» o) and in the analytic case we take
j=%' 0" =0
%4
W = % (8 0 T) (35)
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as in equation (34): otherwise we set x%_% to be the arithmetic mean
of central difference approximations to xn at (fj_l, Mo go) and

(EJ.. Mo Co) . Similar approximations hold for y_r’. Xf' c etc., and

these give rise to an obvious approximation (J?)j—% for J’g , ete.

3.5 Construction of A

%4
Consider a 13 coordinate line given by 7 = L { = go .
constants, and denote points Ej—l' E:] on this line by ‘g‘L, §R .
respectively. In addition, we denote ﬁ?—l =¥ . ):{? = ¥g - and

assume that X = (J?)j_% s LE (J?g.')‘]._l'4 and Z = (J;)j_% denote
approximations to J’g , ijr and J; , respectively, that are constant
in the interval (EL. ER) . Our aim is to construct a matrix
Xj—’A=K(EL' ~R) satisfying properties (i) and (ii) of §3.2.
Equivalently, we could find average eigenvalues ’Xi and average
eigenvectors zi of the eigenvalues and eigenvectors of the Jacobian
matrix A at EL' ER given by equations (20a)-(22) such that

5
Ay = zai;\:i (36a-¢)
i=1

and

5
AF = z?\iai’gi (37Ta-e)
i=1

~s
for some wavestrengths a; . where

ACe) = (')R - (.)L y (38)
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This yields the following approximate Jacobian matrix

~ ~ ~S N—l
Ky = M5 A, (39)

~ ~ ~

with the required properties, where Mj-% = [31, Lo+ I3+ L4 ~5] and

Dj—% = diag(kl. A2. AB' A4. AS) . The choice of wavestrengths in
equations (36a-37e) is made by initially considering states ¥ and

¥r that are close to some average state w as follows.

3.6 Wavespeeds for nearby states

Consider two (constant) adjacent states Yo ¥p (left and right)

close to an average state W, at points L and R on a
f-coordinate line. In particular, the variable ~ given by equation
(25) is piecewise constant. Now in view of the sound speed a for

ideal gases (v = constant) given by equation (28) and the eigenvectors

€1 o given by equations (27a-b), we assume that we have approximate

eigenvectors
aX aY aZ a? 2, 2, 2 al T
L19= [1. ut = vEge oWk T T F “B(u+v+w”®) £ E—J (40a-b)
where X, Y and Z are as described in §3.5,
d = VX®+ Y2+ 22 (41)
and
U = Xu+Yv+ 2Zw (42)

corresponding to the average state 1w . (N.B. The quantity ~ in
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equations (40a-b) represents an average value close to &3 and TR )

PP
In addition, because i - p—B = 0 for an ideal gas, we split g3 into
i

two vectors as

T
I3 = [1, u, v, w, 4(u® +v® + wz)] (43)
and

r, = (0.0 0 0 pF, (44)

where f represents an average value in the cell (EL. ER) of

i- ppp/pi . Finally, we approximate €45 2
r, = (0, -Y, X, 0, Xv - Yu)" (45)
~4 b » ’ 1 »
and
T
Ig = (0, -Z, 0, X, Xw - Zu) . (46)

We seek coefficients a such that

1° %2r %3+ % %5
Moo= oqEy T oglp agly * oty t %t t Ig (47)

to within 0(A%) . (N.B. The vector }:é is considered separately
since it vanishes for an ideal gas. Also, we do not introduce another
coefficient LA since };é has only one non-zero component and is

therefore not required.) After some manipulation (see Appendix A) we

find that equation (47) yields the following expressions for o, and B
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T
a 5 = == [Ap + f%] (48a-b)
’ 2a2
a. = A _4p (48c)
3 T A=,
a
o, = B¥ X0 (48d)
a%x
ag = E%E P2 (48e)
d®x
and
_ _ piAv
ﬁ e ,7_1 ' (49)
where we have made the assumption that to within 0(A?)
A(pN) = NAp + pAN , N = u, v or w (50a-c)
A(pN®) = N%Ap + 2pNAN , N = u, v or w (51a-c)
and
Ap p
a[p] = 2B Av . (52)
-1 ¥-1 ('7—1)2

The results above imply an approximation to the eigenvector g3 given

by I3 = gé + £é/a3 i.e.

piA~r T
(1-1) [Ap - 9%
a2

I3 = |[l.u v, W, %(u?+v2+w?) - (83)

and hence an approximation to i - ppp/pi g With the expressions
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given above it is possible to show that

5
AF = z ?\iaixi (54)
i=1
to within 0(A%?) . We now return to the general case.

3.7 Decomposition for general ¥ ¥p

Consider two states ¥ ¥ not necessarily close such that

equations (36a)-(37e) are satisfied exactly, where

A;, = Utad U, U U (55a-¢)
= ~ ~ ~ - N ~2 .
L g = [1. u:l:z—x, v:l:z—y. wi&g. = + %u?
-1
o~ ~ ;"ﬁ T
+ %v? + Yw? d—] (56a-b)
I3 = (1, u, v, w, ¥(u+vS+w°) - —< i (56¢)
(+-1) |sp - £B]
a2
r, = (0. Y. X 0, Xv-Yu) (56d)
~ ~ ~ T
Ig = (0, -Z, 0, X, Xw - Zu) (56e)
a5 = %[Ap + L-Z'AU] (57a-b)
’ 2&2
ay = bp- R (57d)
a
a, = P)A(—"- giial (57d)
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o = %i—%i—u (57e)
Ul = X;+Y;+Z; (58)
e P-(-gi—il+1 (59)
and
AU = A(Xu + Yv + Zw) = XAu + YAv + ZAw . (60)

(NNB. X, Y and Z are constant in (§L. ER) ) Thus, we have to
determine averages p, u, v, w, a, i, and v such that equations
(36a)-(37e) are satisfied subject to equations (55a)-(60). The

solution to this problem can be determined (see Appendix B) and gives

the following averages

~ vp, N, + vp, N
N = Lol == . N = u, v, w, i, v+ or H (6la-f)
Vo + Vg
p = Vhrp (62)
a? = (:-l)ﬁ{— %(u? + v2 + wz)] , (63)
where
H=%+i+%(u2+v2+w2)
_ p 2 2 2
= 36D + %(u® + v° + w%) (64)

is the enthalpy.
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Similar results hold for updating in the m and { directions.

In the next section we give the numerical results for a test

problem using the algorithm of this section.
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4. NUMERICAL RESULTS

In this section we give the numerical results for a standard test
problem in two-dimensional gas dynamics using the Riemann solver

described in §3.

The problem is that of uniform flow of ’'real air’ past a circular

cylinder. The equation of state used can be written as
P = [1(p. i) - l]pi

where the form of v(p, i) is determined via curve fits to
experimental data [3]. The radius of the cylinder is 0.5 and the
initial conditions are p=1.4, u=80, v=w=00, p=1.0
which corresponds to Mach 8 flow. An O-type computational mesh is
used and thus the grid transformation is from (x, y, z) physical
space to (£, n. ) = (R, ¢, z) computational space, where R, ¢, z
are standard cylindrical polar coordinates. The region of computation
considered is (R, ¢) € [0.5, 20] x [0, 2¢] and we apply periodic

conditions along ¢ =0 .

The grid spacing in the ¢-direction is uniform with 128 grid lines

given by ¢J = (j—%)ng 5 J=1,...,128 . In the R-direction the

grid spacing is geometric with 33 grid lines given by R1 = 0.5 + 4k ,
- J-2 - =T

Rj = Rj—l + kp , J=2,...,33 , where k = 198 and

p = 1.1648336 . Figure 1 displays the isomach contours for Mach 8
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flow after 1000 time steps in the same region. The complete grid is
shown in figure 2 and that part of the grid in 0.5 { R { 5.0 1is shown

in figure 3. Figure 4 shows the complete grid with the portion shown

in figure 3 removed.

In all cases the shock has been captured over at most three cells.
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5.  CONCLUSIONS

We have presented an efficient Riemann solver for
three-dimensional compressible flows using body-fitted coordinates.
The scheme applies to a general convex equation of state and by using a
local parameterisation of the equation of state, only one function call
is required per one-dimensional computational cell. The numerical
results achieved show that the shock has been captured over two or

three cells.
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DESCRIPTIVE LEGENDS

Figure 1 Isomach contours for Mach 8 flow in 0.5 {( R ¢ 5.0
Figure 2 The complete grid

Figure 3 The grid in 0.5 { R {( 5.0

Figure 4 The complete grid with the portion shown in figure 4

removed
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In this appendix we derive the expressions given in equations

(48a)-(49) for the wavest

rengths a; and the term B

equations (47) are satisfied to within 0(A%) .
(47) out in full we have
Ap = ay + a + ag
[ aX aX)
A(pu) = a bu + a—] + o:z[u “T + aju - a4Y = aSZ
[ Y Y]
A(pv) = a Lv + 3——] + az[v = :—‘ +agv + a4X
. o7 aZ)
A(pw) = alhw+d—] +a2[ ~T) +a3w+a5X
2 29 2
u \4 \d
Ae = A(pi) + A[p2—] + A[pz—-‘ + A[pé—]
= a a® %(u?+v3+w?) + 2l
1{v-1 d
+ «a —ai + 'A(u2+vz+w2) -au
2 -1 d
+ a3%(u2+v2+w2) + a4(Xv—Yu) + as(Xw—Zu) + B
where
d = VX% + Y%+ 22
and
U = Xu+Yv+Zw.
From equations (Al)-(A4) we have
aX
A(pu) - ubp = T (t:L1 = a2) - a4Y - aSZ
Aov) - vhp = 2 (a, - @) + aX
Pr=aq % "%

4

so that

Writing equations

(A1)

(A2)

(A3)

(A4)

(A5)

(A8)

(A7)

(A8)

(A9)
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aZ
A(pw) — whAp = = (a1 - 2) + a5X (A10)
and combining equations (A8), (A9) and (A10) we obtain
A(pU) - UAp = ad(a1 = a2) (A11)

since U=Xu+Yv+Zwv and X, Y, Z are constant.

If we assume
A(pN) = pAN + NAp , N = u, v, w (A12)
to within 0(A%?) , then equation (All) yields
ad(ot1 - a2) = plU (A13)

and hence from equations (A9), (A10), (All) and (Al2) we find that

o, = Y- (Al4)
d3x
and
o = P)A{—w = % . (A15)

Combining equations (Al), (A8), (A9) and (Al0) equation (AS) yields
u? v2 w?
A(pi) + A[L] + A[P—] + A[L]
2 2 2
az ' 2,.2,. 2 al
e —-(7_1 a1+a2) + %(uS+ve+w)Ap + E_(al—a2)

+ u[A(pu) - uAp] + v[A(pv) = vAp] + w[A(pw) B wAp]

- %U(al—a2) +B . (A16)
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Now, in view of equation (Al2) together with the relations

A(pN?) = N?Ap + 2pNAN , N = u, v, w (A17)
to within O0(A®) , then equation (Al6) gives
a2
A(pi) = ﬁ(a1+a2) + 8. (A18)

However, we also know that pi = ;?_—1- , therefore

A(pi) = AI}%TJ = ﬁgif_ P Ay

(r-1)*
A i
= P - B b (A19)

to within 0(A®?) , and thus using equation (Al), equation (Al8) gives

In the ideal case ~ = constant, so that Ay =0 and i - ppp/pi =0,

i.e. B =0 for consistency and thus ay = Ap - AI:- : In the general

a
case we would like ay - Ap - AS as Ar - 0, and thus we set
a
p o= -2 (A21)
-1
so that
Ap
a = Ap - e (A22)
a
Finally, equations (Al), (Al3) and (A22) yield
@ o = ——|ap + 228U} (A23)
1v2 2a2 d
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In this appendix we derive the averages
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(36a)-(37e) satisfied.

Writing equations (36a)-(37e) out in full we have

Ap =
A(pu) =
A(pv) =
Alpw) =
Ae =

+
-
A(pU) =
A(Xp+pul)
A(Yp+pvU)

A[pi + mi]

2

~o Nz Ll

-1

~o~N

;4(Xv—Yu) +

o3
+;2[:-;ﬁj .
+;2[;-§_Yj .
ol -
= ;1[,;,;—2+'
-1

~e

5(

Xw-Zu)

al(U+ad) + a2(U-ad) + a3U

+ asUu—

P

+ a3Uv +

a4UY

al(U+ad) [v +

L

a4UX

~

~

- a5UZ

~

aY
d

~ ~

u - a4Y - aSZ
a3v + a4

+ a.w + a-X

3 5

=— +;('{I’—;d);-
) - Eptiman

that make

~

o

al(U+ad) [u + d—-] + a2(U-ad) [u - d—]

~

aY
d

equations

(B1)

(B2)

(B3)

(B4)

(BS)

(B6)

(B7)

(B8)
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~ ~

A(Zptewl) = @, (Urad) [@ + aﬂ] + ay(U-ad) [Q = 3—2]
+ aBUw + a5UX (B9)
. Ug®
A(U(e+tp)| = A4&(Upi+Up) + Alp 5

= Zl(a+;d) 2 4 g + ﬂ]
=3

+

o U(Xv-Yu) + a U(Xn-Zu) (B10)

where

U = Xu+ Yv + Zw (B11)
d = VX +Y?+22 (B12)
®= ¥ +vi+w? (B13)

and for convenience we have written

Q2 = u? +vZ+w o, (B14)
In addition, X, Y and Z are constant and ;i' i=1,...,5 are
given by
@, o = ——|ap + 228U (B15a-b)
1,2 92 d

P N _Ap
a = bp % (B16)
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d3x

and
o _ pAw _ pZAU
5 X da3x

(B17)

(B18)

Firstly, equation (Bl) is satisfied by any average, and noting that

AU = A(XutYv+Zw) = XAu + YAv + ZAw ,

equations (B1)-(B4) yield

A(pu) = ;Au + GAp
A(pv) = ;Av + ;Ap
A(pw) = ;Aw + ;Ap

whilst equation (B6) gives

A(PU) = pAU + Uhp

From equations (B7), (B8) and (B9) we obtain, respectively,

A(puU) = uUAp + puAlU + pUhu
A(pvU) = vUAp + pvAU + pUAv
A(pwU) = wUAp + pwAU + pUAw

which combine to give

A(pU?) = U2hp + 2pUAU

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)

(B26)

(B27)
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Substituting for p from equation (B23) into equation (B27) yields the

following quadratic equation for U

UAp - 2UA(pU) + A(pU?) = O

Only one solution of equation (B28) is productive, namely

U = AleY) - V/[A(pU)]z — ApA(pU?)

Ap
l.e.
= Vb Up + Vop Uy
Vo + Vg

AU LR
Equations (B20), (B21) and (B22) give
~ _ A(pu) - phu Vo u + Vog up
= ¥ =
VL + Vig
~ _ Alpyv) - phv v v+ Vg vp
= = =
’ Vo * Vb
and
~ _ Apw) - phw _ Vo v * Veg wp
N ~ =
? Vo + Vg

(B28)

(B29)

(B30)

(B31)

(B32)

(B33)

(B34)
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We note that equations (B11l), (B30) and (B32)-(B34) imply that

U = Xu+Yv +Zw . (B35)
We have now determined p, u, v and w , so that we are left
with equations (B5) and (B10) to determine a, v+ and 1 . We begin

by employing equations (Bl15a)-(B18) so that equation (B10) becomes

2 = ~
A(pi) + A[%—] =, %q3Ap - giid

-1 ¥=1

~ o ~

+ p(ubu + vAv + wAw) . (B36)

Now, it is a simple matter to verify that

2 e ~e re ~e ~s
ﬁ[E%—] = Y%q%Ap + p(uldu + vAv + wAw) (B37)

so that equation (B36) gives, after rearrangement,

(v=1)A(pi) + pihv - &p = O (B38)
If we define averages ; and ; by
S = Ve Sy * Vo S ., S = 1 or i, (B3%a-b)
VoL * Vog
we obtain the following identities
Api) = phl + ibp (B40)

and

Ap = A [pi('v-l)]

= (v-1)phi + (1-1)ihp + piMr |, (B41)
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so that equation (B38) yields
(7—7);Ap + (v=v)phi + p(i-i)Ay = 0O . (B42)
The only physically acceptable solution of equation (B42) for all

variations Ap, Ai and Ax is

~ ~ ~

+ = + and 1 = 1 . (B43a-b)

given by equations (B39a-b) . It now remains to determine a .
We begin by subtracting equation (BS5) multiplied by U from

equation (B10) to give

e

2 "~ ~o
a Pl _  \(Upi+Up) - UA(pi) - Uhp

7-1
Upa?) _ Tafe2?] - g2
+ A 5 - UA 5| ~ %pq“AU , (B44)
which determines g 5 Simplifying equation (B44) using the following
identities
P PR
. o ol R R )
A[U(pi+p)] - UA(pi+p) = »p (B45)
Vb, + Vp,
L R
and
2 ~ 2 ~ [\/p_ %qz +\/E-'Aq2]AU
A[Hgl—]—m[%-] s pal L RVR (B46)

Vb + Vg

we find that, after division by pAU ,

a? = (v-1) (H - %3) . (B47)
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where H is a mean enthalpy given by

» Vo, H, + vpbo
B W WG B )

Vo + Vg

and

PL(R)
PL(R)

h@w ® * iRy * %L(R)

"L(R) PL(R)
() ™DPL(r)

T (B49)

(N.B. If we explicitly write out equation (B47) we obtain

R+iR)

o
]

o ot
b ot * VPR oy pR N [F (pL/pL+iL) + Vb (pp/p

2 LL

S ~arm e 12
. P1 Pp (UR uL) (B50)
(Vo + Vg )?

~

which ensures that a® is positive for real data.)
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In this appendix we give the derivation of equations (1)-(11).

The Euler equations for compressible flows in three dimensions are

£t+£'x+%y+'b»z=g (C1)
where x, y, z are Cartesian coordinates, t represents time,
T
¥ = (p. pu, pv, pw, e) (C2)
- 3T
£(0) = |pu. pteu®. puv. puw. u(etp) (C3a)
r 3T
g(¥) = [pv. pvu, p+pvZ, pvw, v(e+p) (C3b)
. 1T
h(¥) = |pw, pwu, pwv. p+pw”, w(e+p) (C3c)
e = pi + %p(u+vi+w?) (C4)
and the flow variables p, u, v, w, e, p and i are as before. Ve
also assume a prescribed equation of state relating p, p and 1i .
Defining an invertible, twice continuously differentiable (grid)
transformation from (x. v, 2) space to (§, n. ©) space by
x=x(E. 71 0), y=y(. n. ) and z = z(f. 1, {), then we have
[é] d a
F C exTVeaytkaz (&)
a a a d
= *nax ' Ynay " maz ()
and
a a d a
e o= - o7 ()
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using the chain rule for partial derivatives. (N.B. The
transformation is chosen so that the coordinate planes coincide with

the body.) From equations (C5), (C8) and (C7) we find that

8
6 [‘Ix n an * JJLS 'Ef] (C5)
- &L Y] (co)
gy -~ JU'EGF T “q 317 ¢ ac
and
g. - l[Jz T - a_] (C10)
6z -~ J°F & on € aC
where
¥ Y5 %
J = xn yn ZTI ; (C11)
e BE " A

The term J’Ec denotes the cofactor of x,g. in the matrix given by
equation (Cll), i.e. generally we have
a, 6a2 633 6a2 633

J = - (C12)
a1 aaz 6a3 6a3 6a2

where 4. 8y, ag € {x, y. z} : Q. Gy, Oy € {§. n. {) . with both
sets considered in cyclic order. Using the expressions given by

equations (C8), (C9) and (C10), equation (Cl) becomes
Jy, +J§E+Jf +J§§

Y
+ Jegg + Iig, + i

+ J?\;E + Jfrhvn + ng',hvg = 0. (C13)
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If we note, however, that
a_ y g [x y
3F ["@ * s sz*~‘] * an[JTrf“ IR errvh]
a_ Y _ X X
NS [J?i R J?fé] = Jefg * Tk * Ik

Y Y y
* Jegg * Ign t JeE

+ J?l,gf + Jfrhvn + JLZ.IA;L. : (C14)
(after a large amount of cancellation), and that Jgt = (Jg)t , then

equations (Cl1)-(C4) becomes (in generalised coordinates §, 7, ()

() +Eg+ G+ B = Q. (C15)
where
T
¥ = (p. pu, pv, pw. e) (C16a)
_ y
E = Jgf£+ Mg+ Jgh
T
= [pU, J?p + pul, Jgp + pvU, J;p + pwU, U(e+p)] X (C16b)
_ y
¢ = Tkt IR IR
T
= [pV. JJT;p + puV, vap + pvV, Jf’p + pwV, V(e+p)] , (C16c)
_ y
H = JeE+ Jg+ Jh

T
[pW. J?p + puW, Jgp + pvW, J?p + pwW, W(e+p)] , (C16d)

pi + Yp(u® + vZ + w?) (C16e)

o
[}



and U, V, W are given by

=
1

together with the equation of

p

S
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J?u + ng + J

2w
£

X, y z
u + v + w
Jﬂ JU Jﬂ

J’Eu + ng +J

tate

p(p, 1)

z

CW'

(C17a)

(C17b)

(C17¢c)

(C18)



	Title page 1-88
	NA_Report_1-88

