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SUMMARY

This paper describes numerical experiments made to investigate
the stability of some time-stepping algorithms applied to the equation
@ + P(u) = 0 representing a non=linear elastic spring. These
algorithms would be unconditionally stable when applied to linear
problems but here they may be orly conditionally stable. Ways of
improving the stability are demonstrated; the effect of linearisation

is also investigated.



INTRODUCTION

This paper describes numerical experiments made to investigate
the stability of some time-stepping algorithms applied to non-linear

equations of the form U + P(u) = 0 :

W) = 0, S,;8. >0 (1)

a o+ Slu(l + S 1755

2

which represents a non-linear elastic hardening spring and
4 + 8 tanh(u) = 0 , s>0 (2)

which represents a non-linear elastic softening spring.

The insgpiration for this work comes from a paper by Park [1]
who gives the unsatisfactory behaviour of the trapezium rule/Newmark [2]
average acceleration method when applied to equations (1) and (2) as
the motivation for introducing the Park 3~step scheme (which is a
linear combination of the Gear 2-step and 3-step methods [3]). We
record here the results of applying to equations (1) and (2) the Newmark
algorithm in its single-step form and the single-step SS22 algorithm
[4] in three different forms of which one is linearised. The particular
merit of single-step algorithms is the ease of changing the time step

size.

BACKGROUND THEORY

We first note that equations (1) and (2) are examples of the

conservative system

4+ P(u) = 0 (3)



which represents a constant energy situation:

%ﬁz + [P(u)du = constant . (4)

For equation (1) we have

5 " u2 ulf
1°2 u n 2 0 9
Fu” + SIZ + 31824, = v0 + 512 + 81524 (5)

N

v, are the values of u(0), u(0) respectively.

where u o

OI

For equation (2) we have

%ﬁz + Stnlcosh(u)) = %VS + SRn(coshCuo)) (6)
The solutions are periodic. If Vg = 0 the amplitude is Uy -

Equation (1) has an exact solution in terms of Jacobian elliptic

functions. If vO = 0 . we have
u(t) = uocn(— Qt,K) (7)
where ~, )
w = Sl(l + S2u0)
and 2¢
) U052
k = - . (8)

2
2(1 + uOSZ)

~
The period T = 4K/w (9)
where K can be obtained from Abramowitz and Stegun [5]. This is

a useful check on the numerical results.

The period for the solution of equation (2) has to be measured

from the converged solution for large amplifude but for u remaining



small enough for

we have the solution of

given by

where

(uO

The period is T = 4K/w and K 1is obtained from reference [5].

THE ALGORITHMS

The Newmark algorithm is implemented by solving for ﬁn

non-linear equation

i
“n+1

which represents equation (3) satisfied at

u
n

is known from the values at the beginning of the time-step.

Then u

n+1

+ P(U + At?Bu .
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< V3 is the condition for a periodic solution) and
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W = out (1—Y)Atun + YAturH_1 (17)
where R, Y are the standard Newmark parameters and At is the
time step.
The SS22 algorithm is implemented by solving for an the
weighted residual equation
At . 2
oo+ Plu+Ta +=a)]dt = 0 (18)
n n n 2 "n
0]
where w(T) 1s the ‘weight'. Thus in 8SS22 the non-linear equation
is satisfied in some average sense over the time interval. We want
to introduce parameters em where
o At " At
(At) Gm = j w(T)T dT/I w(t)dr . (19)
0 0
Hence we have to decide how to expand the non-linear term. Here
we take
' TZ . TZ A
5 + s - = ' r
P(un U+ ocn) P(un) + (Tun + an)P (un) A (20)
Then equation (18) gives
5 At? A
. EE ) = 2
o +Pu) + ]_:Atelun + =5 ezocn]P(un) 0 (21)

as the equation to be solved for un : We now have to choose what
to substitute for u in what is effectively the remainder term of

the Taylor expansion in equation (20):

(i) un

u gives the linearised form

ey
(ii) un %(u + u ) is recommended in reference [4].
n

n+1
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(iii) un un+1 gives a more 'implicit' form
also tested here to see what effect it has.
(ii) and (iii) give a non-linear equation to be solved

at each time step for un , with

U T oY, + Atun + = un . (22)

The SS22 algorithm is completed by taking

u = u_ + Ato_ . (23)
n+l n n
For the hardening spring the corresponding non-linear equations
are solved using the NAG subroutine CO2AEF and for the softening spring
the NAG transcendental function solver COSAJF is used. The latter

is an adaptation of Newton-Raphson.

NUMERICAL RESULTS

1. P(u) = Siu(l + Szuz) (The hardening spring).

We take S1 = 100 , Sy = 10 and starting conditions Vg = 0]

with Uy = 0.1, 1.5 to give two cases with lesser and greater

non-linearity effects.

(a) Newmark

We take Y = 0.5, B = 0.25 which gives the trapezium rule/
average acceleration equi&alent;

For both Uy = 0.1 and ug = 1.5 this algorithm is unconditionally
stable and the numerical solution is not damped but as expected it
becomes distorted for values of the time step greater than about
T/10 where T is the period (for ug = 0.1, 1.5 the periods

are T = 0.61, 0.15 respectively to 2 figures from reference [6]).



Park refers to 'local instability' here but we find that the
numerical solution remains stable in the sense that the amplitude
(although inaccurate) remains bounded. (Park's time scales

in his figures 8,9 should be multiplied by 10—1).

(b) Ss22

(The linearised version). O, =06, =0.5.

(s E n 1 2

Il
o

For both Uy = 0.1 and Uy = 1.5 this algorithm gives a stable

and undamped solution for smaller values of At but the damping
effect increases as At increases. The algorithm is thus
unconditionally stable but the damping effect reduces the accuracy

for values of At > T/10 .

(ii) G:%(u +u ), 0, =0,=0.5.

n n n+l

For wu, = 0.1 this algorithm becomes unstable at about At = 0.064

which is approximately T/10 . Figure 1 shows the result with
this algorithm with At = 0.1 together with Newmark (a) with

the same time step.

For Uy = 1.5 this algorithm becomes unstable at about At = 0.01

(T = 0.15 here). Experiments made to control the instability
by increasing the 0 values are illustrated in Figure 2. Taking

At = 0.015 this shows instability with 61 = 62 = 0.5 and

slight damping with 91 = 92 = 0.55 .

(iid) uo=uo 61 = 62 = 0.5 .

Figure 3 illustrates the damping effect produced by this algorithm

for At = 0.1 with u, = 0.1 (this would be unstable with (ii))

(T = 0.61).



Figure 4 illustrates the effect produced by this algorithm with
uy = 1.5 (T = 0.15) . Taking At = 0.01 gives a slightly
damped solution. Taking At = 0.03 gives a solution which
first increases in amplitude and then becomes steady with

amplitude s~ 2 . In the sense that the amplitude remains bounded,

this is a stable solution.

P(u) = s tanh(u) (The softening spring).
We take 8 = 100 and starting conditions Vo = 0 with

Uy = 0.2, 4.0 to give lesser and greater nonlinearity effects.

(a) Newmark

We take vy = 0.5, B =0.25.

For Uy = 0.2 (T = 0.63) this algorithm gives a stable solution
up to the highest time step tested i.e. At = 0.3 .

For u, = 4.0 (T =~ 1.3) At = 0.2 is stable and At = 0.3 is
unstable. This corresponds closely to Park's result. Park
says he is using Newton-Raphson to solve the non-linear equation

on each time step and we are using an adaptation of Newton-Raphson

with the derivatives estimated.

(b) 5522

A
(1) u un (The linearised version).

For u., = 0.2 (T ~ 0.63) the algorithm is stable for At = 0.1

0
and unstable for At = 0.2 (Figure 5).

For uy = 4.0 (T=~ 1.3) At = 0.03 gives. a solution which

appears to be marginally stable. Figure 6 shows the result



with At = 0.04 which is definitely unstable, (to make Figure 6

clearer a reduced number of results are actually indicated).

Figurc 7 shows the stabilising effect of increasing the 0 values

to 61 = 62 = 0.55 with At = 0.1 .
i i A—l = E
(ii) u = 2(un + un+1) . 61 92 0.5
For u, = 0.2 this algorithm certainly gives a stable solution

0
up to At = 0.3 (T ~ 0.63) .

For ug = 4.0 (T~ 1.3) , Pigure 6 also includes the solution
with At = 0.04 which is slightly damped. As At is increased
the solution becomes inaccurate and by At = 0.2 it is highly
damped. At At = 0.5 the non-linear solver failed.

(iidi) u = un+1 .

This algorithm gives conditional stability for both values of

the amplitude. Figure 8 shows that for ug = 0.2 (T =~ 0.63)
the marginal value is around At = 0.06 . The results with

At = 0.1 are definitely unstable.

CONCLUSIONS
For the values of the parameters which give trapezium-rule-like
versions of the algorithms i.e. (a) Newmark with Yy = 0.5, B = 0.25

and (b) (ii) S822 with 6, = 6. =0.5 and u = 2(u + u ) the
1 2 2 "n n

+1
first gives a better performance with the hardening spring and the
second with the softening spring.  We can always obtain stability

by adjusting the parameters to induce artificial damping at the cost

of decreasing the accuracy. Alternatively the 'rule of thumb' which



some engineers use (Reference 6 and personal communication) : At £ T/100

would certainly be safe with the cases considered here.
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