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A FULLY TWO-DIMENSIONAL FINITE DIFFERENCE METHOD ON A
REGULAR GRID FOR SYSTEMS OF CONSERVATION LAWS

ABSTRACT

We present finite difference algorithms for a scalar conservation
law and for a system which are fully two-dimensional, conservative,
stable, second order accurate and anti-diffusive. Shock recognition
in two-dimensions is discussed together with an adaptation of a wave

splitting technique for the Euler equations.



A FULLY TWO-DIMENSIONAL FINITE DIFFERENCE METHOD ON A REGULAR
GRID FOR SYSTEMS OF CONSERVATION LAWS

1. Introduction

In an earlier report [1] high order algorithms were proposed for scalar
conservation laws in two and three dimensions, while another report [2]
dealt with shock recognition in two dimensions. In the present report we combine
and extend these ideas to present a complete method for a two-dimensional system
of conservation laws.

The plan of the report is as follows. We begin by restating the basis
of the two dimensional algorithms for a single scalar conservation law and
give a version which is exact for bilinear functions, proving at the same time
that it has a local bound (LB) property.

We then summarise the procedures (detailed in [1]) for making the scheme of
higher order, giving special attention to those which preserve the LB property
almost everywhere. Versions of these algorithms for the scalar non-linear case
are then given.

In the next section we deal with shock recognition in two dimensions

(and mistaken identity!) in a manner similar to that in [2] but expanded further.

In conclusion some of the restrictions in the method are discussed.



2. First order Algorithm

For the two dimensional scalar conservation law

u, F>< + (& Fug ot a(u]ux + b(u]uy = 0 (2.1)

we define the fluctuation over the quadrilateral ABCD (see Fig. 1) as

$ = - IJ[FX * G lda = - § (F.G)*dS . (2.2]
ABCD

Using trapezoidal rule integration (exact for bilinear functions F,G) this gives

$ = ) {30F. + F )y, - yo) + 3G~ *+ GJ)(x. - x )} (2.3)
sides like CD c '0°°D °C c %’ "

which, added over all cells, has the internal cancellation property ofa discrete

conservation law.

Specialising to the rectangle in Fig. 2 we can show (as in [1]) that

D
= - 1 -—
¢ ] [ﬂGD +G,) - 46, + GB]]Ax
pairs of sides
like DA,CB
B C
Fig. 1
D T [ I TN I (2.4)
pairs of sides
e like DOC,AB
Ay
C = - 3 z (FD -FAJAy - 3 Z [GD fGC)Ax (2.5)
bx sides like DA sides
Fig. 2 like OC

Multiplying ¢ by the factor At/(AxAy) we obtain

+
Ni=

an « 302 4 %¢SB (2.6)

DA _ _ Bt (g _f PE o oA 6 B ) (2.7)

where % " ax VoA G Ay D C

When (2.6) is summed over a network of rectangles, contributions from

adjacent sides can be added so that, apart from boundaries,



Z ¢ = z ] q),: +®G ’ (2.8)
all all pairs
cells of sides

dropping superfixes in (2.7).

The discharge of the fluctuations over all rectangles is therefore achieved
by the discharge of these side fluctuations (2.7) over all sides (apart from
boundaries). As a result, many of the techniques for one-dimensional algorithms
can be used in two dimensions. The procedures are applied simultanecusly in the x
and y directions (parallel to the rectangle sides), as distinct from time splitting
techniques in which they are applied serially.

If the signals (2.7) are used to increment values of u at the downstream
end of the sides' (indicated by the signs of F'(u), G'(u) or their
approximations) in a time step At, we obtain a conservative first-order
scheme [3]. For a,b constant, it is exact for linear functions u, and (as
can easily be shown) it satisfies a local bound (see below).

Practically, For QF, o arising from DA,OC (see Fig. 3), we can
specify which points receive increments (2.7) in the first order algorithm once

approximations to F'(u) and G'(u) are known. These can be taken to be (see [3])

Ffeey = "0 " Fa , Gt =B 6
u- - u u., - u
D B (2.9)
= aAD’ say, = bAD' say.
3. Bilinear Functions and the LB property

To make the first order scheme exact for bilinear functions u we introduce the
idea of transfers, i.e. the addition @and subtraction)of S0me proportion of
the quantity u to one point @nd from another) at a fixed time:: such transfers

clearly preserve conservation. Transfers of a

J proportion of the increments (2.7) laterally, i.e. of ¢F
in the y-direction and of ¢G in the x-direction, do not

D E alter first-order accuracy and allow xy accuracy to be

C attained. 1In the first order method if aAD‘bAD are both

Fig. 3 positive
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from D to F . likewise the increment ¢G is added to D: 18t a fraction a4 of

the increment ¢F of (2.7) is added to D:let a fraction o. of ¢ be transferred

¢ then be transferred from D to E. As in (1] the condition that the scheme is

exact (in the linearised case) for functions Xy 1is

v,0, * V.o, = V.V (3.1)

ca At At
where v1 = aAD Aix v2 = DCD By (3.2)

A parametric solution of (2.10) is

= 2 = in2 i
ay = v, cos 0 @, = v, sin 0 (3.3)

(with © a free parameter), and the allocation of the signals

2
F vzcos 6¢F

0 (1-v sin26]¢G
T2
E v151n 6¢G

- 2
(1-v_cos 9]<I>F

A D 2

Fig. 4
(2.7) is then as shown in Fig. 4. A convenient choice of 6 is 6 = w/4, for
which
o, = 3v a, = 3v . (3.4)

Turning now to the total increment received by D, the value of Ug

at the next time level will be (see Fig. 3)

UD =up (1 - v, 00526)¢2A [ = v, sin26]¢gC
+ v, cos?6 ¢£5 + v, sin @25 (3.5)
=up - (- v, cosze]v1(uD - uA] = (1 = 7 sinzele(uD - ug)
cusio V1(UC ug Vq sin26 vz[uA uBJ (3.6
since, for example,
QEA = - %5 (fy - ol = - %E applip ~ uy) = Vo luy - u,) (3.7)

by (2.8) and (2.10). Thus



= - - 2 a - 3 2 - =~ 1 2
Up {1 v1(1 v, cos 0) v2[1 v, sin ) + uA[v1(1 v, cos20) vV, sin 0)

c
|

- 12 - 2 2 12
+ uc(v2(1 v1 5in20) v1v2 cos?0) + ququ[cos 6 + s5in20)

= uD(1-v1-v2+v1v2) + uA[vq-v1v2J + uC(vZ—v1v2] + UgVyVy

(3.8)

1]

(1-v1J(1-v2JuD + v1[1— 2]uA + v2(1—v1luc + \ZAPU

Provided that 0 = v1 =1, 0= V2 £ 1, all the coefficients in (3.8) are

positive and it follows that uD lies in the support of UD’UC’UB'UA {(Fig. 3).

We call this property the LB (locally bounded) property, viz.

D
(3.9)
u_ € support [UD'UC’UB‘UA]
4. Second order Algorithm and B functions
We now have a conservative scheme, exact for bilinear functions u
(in the linearised’ case) which satisfies an LB property. Since 'first ‘68der scheme
are too diffusive in most cases we seek to make the scheme second order (i.e.
also exact for x> and y2) and can do this by further transfers.
. DA DC
Thus, by transferring a1¢F from D to A and a2¢G from D to C
we do not alter bilinear accuracy but do obtain second order accuracy - for
x? and y? - if
= 2 = 2 .
v, (1 o+ 2a,) vi v, (1 + 2a2] V3 (4.1)
4 - l - = l -
leading to @, = 3 (1 v1] a., 101 vZJ . (4.2)

Such a scheme is a variant of two-dimensional Lax-Wendroff type schemes.
As a result, however, (as is well known) we lose the LB property.

. , N AL
Al ditelndgllve is to transfer u1¢ from D to A

F

I3 CH

and a2®G from D to C (see Fig. 5) and second order

A
E accuracy 1is obtained with the same values (2.19) of

D

a .. This is a second order fully upwind scheme.

B C ) . .
The LB property is again lost, however,
Fig. 5

H
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We can re-establish the LB property by using a non-linear function of the
two possibilities above., As in [4] we introduce a general transfer function

called the B function, which is a function of the two fluctuations

C
¢EA and QQG (or ®gc and ¢GHJ.
For example, if B[b1,b2J = b1, ¢EA is transferred (as in the Lax-Wendroff
scheme abave), while if B(b1,b2] = b2, QQG is transferred (as in the second

order upwind scheme). The choice B = %[b1+b2] corresponds to a Fromm type

scheme.

If B=+5b the new value of Up after a time step is

1
D _ . DA _..DOC CB AB
u = up + (1 a3J¢F + (1 a4)¢G + a3¢F + a4¢G
DA (0] ED FD
- a1¢F - “2¢G + a1¢F + a2¢G (4.3)

(see Fig. 5), but if a general B function is transferred we have

D _ . .DA s cB AB
u = UD + (1 Q3]¢F + (1 a4]®G + QSQF + a4®G
(4.4)
i DA AG) i <DC CH) <ED DA) (FD bC
a1B(%F ,@F aZB QGA'OG + a1B QF ,¢F + azB ¢G ,¢G
Setting B = D(Pq:by) and y = B(0y:b)) ) (4.5)
b1 b2
we can write
D _ e DA L DC
u = uD + (1 as 8a1+ya1]¢% + (1 a4 Ba2+ya2]¢G
CB AB
+ asg: + a4¢G (4.6)
U - [1-03-3-YG1)V1(UD-UAJ - (1—a4-8—ya2Jv2(uD-uC)
—a3v1[ur-uH] - a4v7(uA—uBJ (4.7)

= uD(1—v1(1-a3—B—Ya1J - v2(1-a4—8—ya2))
+ (v1(1—a3-8—ya1) - v2a4)uA + (v2(1—a4—8—ya2) + v,'aBJuC

+ (v1a3+v2a4)uB (4.8)
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= [1-(1—v1][1-v21 + By (va, +va ) lug + (v, (1-v,) - B=yv,a,lu

171 72 D 1717 7A
e (4.9)
+ [v2[1—v1) B szazluc * v,V
using (3.1)}. Here B,y vary from cell to cell.
The LB property depends on the inequalities
- - - B = =1 .
(1 v1)[1 v2) B Y(v1a1 + v2a2] (4.10)
1-v, - B -ya, 2 0
! 2 (4.11)
- - B <v >
1 v2 B8 Yo, 2 0
Suppose that we take
i b 2
T ={mln mod(b4,b,) b,b 0 (4.12)
1’72 0 b,b, <0

2
172
(c.f. [11}). Then from (2.22) it can be seen that 0 S B <1 and 0 S y £ 1.

In this case sufficient conditions for the inequalities (2.27), (2.28) to hold

are
(1 - v1J(1 - v2] + [v1a1 + vzazl <1, (4.13)
i.e. (v1 = v2)2 tV, v, 20, (4.14)

which is satisfied for all v1 <1, v2 £ 1; and
v1(1—v1} - %v1(1—v2] 2 0, v2[1-v2) - %v2(1-v1J 20 (4.15)
for which we require v1[%-v1] + %v1v2 z 0, vZ(%-vzl + %v1v2 2 0. (4.16)

These conditions are satisfied if v1 43, v_£2

Thus with the non-linear transfer function (4.12) it is possible to obtain

N
NI

a conservation scheme which is LB and second order almost everywhere. A
similar analysis can be carried out for other B functions. [Note that the LB
property (..1/) described here 1s slightly different trom, and stronger than,

that used in ref. [1], equation (4.17) - see below].



5. Anti-diffusive B functions

The B function (4.12) gives a scheme which is formally second order but

clips extrema (b1b2 ¢ 0). Another approach to preserving the LB property

is to specify a small range of b1’b2‘ close to extrema, for which second order
accuracy is sacrificed in favour of LB. This can be done for any convenient B
function, even one which on the face of it is known to violate LB when not

mollified in such a way.

Thus the B function (in one dimension)

o

-

2 4 1,2
el ”mod(b1,b2) b2 3
. b
ey mlnnmd[bq,bzl El'< 1(1-v) h1b2 >0 (5.1)
B(b1,b2J = 2
maxmod(b1,b2] otherwise
\‘0 b1b2 <0 b1b2 <0

(c.f. ref. [1], eguation (1.37)) , for the majority of values of b1,b2
violates the LB property (through the part max(b1,b213, giving the
Lax-Wendroff scheme or the second order upQI;;”;;E;me in precisély those situations
where such schemes produce oscillations. This is in direct opposition to the choice
(4.12), which is safe in the sense that it picks out the scheme which
does not produce oscillations in a given situation.

The B function ( 5.1), dubbed WLTRABEE in another place [4], can be
constructed in an alternative way which makes clearer its relationship with the
LB property and with concepts of Flux Corrected Transport [5]) [(6]. First,
we recall that the first order upwind scheme is very diffusive. The second
order correction (made through the B-function transfer) reduces the diffusion
and is thus an anti-diffusive step in the FC! Ltravition. At the same Ltime we seek
the requirement that the LB property is preserved, for which we need positive
coef%icients in the expression for uD (c.f. ( 3.8)). The B function of
(5-1)  in fact increases anti-diffusion while preserving positive coefficients.

One particular property is worth noting, throwing light on the coefficients

% and 3(1 - v) in (5.1) ., If, for an adjacent pair of cells (say AD, DE in Fig. 5)
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the B function for the left hand cell is zero (at an extremum say) and an

overshoot is threatened, then the coefficient % in (5.1 ) is just that which

leads to uD = Upe Similarly if the B function for the right hand cell is

zero and an undershoot is threatened, the coefficient (1 - v) in (5.1 J is just

that which makes uD =u Thus no new extrema are (quite) created. This

0

description is of great value when we generalise to two dimensions, which we now

do.
| F
G E
A D
B | C
Fig. 6

To maximise anti-diffusion in two dimensions we again propose to use a

B function based on

B(bq,by) = maxmod(b1,b2)

with limits on its range of applicability (c.f. (5.1)), to be determined.

Assuming zerso contribution from the fluctuations in AG and CH (close to an

extremum) and a regime such that ]b1|>|bzl.so that B =1, v = b1/b2, we have
from ( 4.4 )(see Fig. B)

D
u = Uy - [1-a3]v1(uD uAJ - [1—a4]v2(uD-uC] - a3v1[uc—uB)

- a,v,(u

4V A-uB) - ya1v1(uD-uA]— Yo,V [uD-uC)

= [1—v1(1—a3] - v2(1—a4) - ya1v1 - Ya2v2]uD
+ [[1—a3Jv1 TV, yv1a1]uA + [[1—a4]v2 T agv, *av, ]uC

1

+ (a3v B

+ a4V2Ju

(5.2)

(5.3)

(5.4)
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= (1-v,-v_+Vv_v_ - ya_v

175V, A yazszuD + (v1—v vV, * YV, ]uA

12 171
+ [vz—v1v2+a2vzyJuC + v1v2uB ;
using (3.1). We want to choose vy in such a way that, in the worst case,

the coefficient of uD is zero, i.e.

_ - | = = s - =0, d
(1 v1)[1 v2] Y2\4(1 v1} y2v2(1 v2) 0, an

uD is then a linear combination of UA’UB and UC' This leads to
. 2(1-v1][1-v23 ) 2
v1(1-v1]+v2(1—v2) v1 . v,
1-v2 1—\)1

The B function (5:2) is now limited as follows

; b
r Y |n1nm0d[b1,b2] =, y
b >
2 b1b2 2 0
B(b,,b_ ) =< otherwise
19> maxmod[b1,b2]
L 0 b1b2 <0

Correspondingly, assuming zero transfers across ED and FD (Fig. 6) and

a regime such that |b1|<lb2| so that B = b2/b1, Y = 1 we have from (4.4)

(assuming different B8's for the X,y directions, i.e. 81,82 respectively)

D
us o= up - [1-a3]v1(uD-uA)-[1-a4Jv2[uD—uC]

- a v1[u

3 —uBJ—a v, (u,-u ]+a181v1(uD-uA)

C 4°2°"A B

+ a_ v B, (u )

2¥2P2 g7,
= [1—v1[1-a3]—v2[1-a4]+v1a161+v2a282]uD
¢ [V1(1-a3]-a4v2-a161v1]uA + [v2[1—a4J-a3v1—a262v2]UC

+ (aav +0 vzlu

1 74 B

= [1—v1~v2+v1v2+v1a181+V20282]UD + [v1-v1v2—v1a181]uA

-v.a . B.lu. + v, v_u_,

t v Vv mvoasB, Tus 1¥2%

again using (3.1).

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
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The choice of the B8's Must now be made to make the coefficients of

UA' uC positive, namely

1-~v, =301 ~-v,)B8, 20
2 L (5.12)
. o1 _ >
1 v1 2(1 VZJBZ 0
glving 201-v,) 201-v,)
g = —_—, P ———— " (5.13)
1 1 v1 2 1 v2
In this case uD is a linear combination of uD and UB'
We have thus devised two limiters, Bi[b1,b2], i=1,2, for the x,y
directions respectively, as follows
"\
r minmad(b,,b.) El >
Y mi 192 b, Y
>
J Bi minmod(b1,b2] Eg_> B b1b2 B
= 1 P N
Bi(b1.b2] b1 i (5.14)
maxmod(b1,b2) otherwise
L 0 byb, ¢ O
.

where Y , Bi are given by (5.7) and (5-13)., Since vy , Bi must be greater

than 1 we are restricted to v1, v, < i,

6. Optimising anti-diffusion

The spirit of the anti-diffusive limiter is expressed in the idea that
near extrema it is more important to obtain maximum anti-diffusion (subject to an
LB principle) than it is to obtain formal accuracy. As a result discontinuities
are sharper [7]. Note that conservation is built-in.

In [1] the B function idea is applied to the lateral transfers (for

~y —accuracy) also. As a result a sharper LB property is obtained, namely,

’U] » - [8.1]

D
u € support [uD.uC A

at the expense of local bilinear accuracy (c.f. (3,9)). In that

case, using the notation of the present discussion, (4.4) becomes (see Fig. 7)



+a_B(e"P,608 ), o p(eAB 4OC
3\F " F 4°\G "G

Fig. 7

_ DA _AG | pcC ,CH ED DA FO _DC
a’IBéF ,¢F> GZBGG .¢G)+ a,lBéF "DF))' GZBGG '¢G> (6.2)

By an argument similar to that following (5.2 ) and (5.8) , assuming|b1|<|b2|
and zero fluctuations for ED, FD, EI, KF (see Fig. 7} and also using longitudinal

transfers with B function (5.2) and lateral transfers with B function

B[b1,b2] = ml“mod(b1,b2) (6.3)

(corresponding to minimum lateral diffusion - see (6.14)), we have from (6.2)

)

u = uD—v,I(uD-uA]—\)Z(uD—uCJ—an,I(uD—uA]-a4v2(uD—uC

] . 1 -
+ a1B1v1(uD-uA)+a282v2(uD-uC]+Y1a3v1(uD uA]+y2a4v2(uD uc] (6.4)

[{]

uD-v1(uD-uA][1+(1—y%]+a3-81a1]—v2(uD-uAJ[1+{1—Yé]+a4-82a2](8_5]

b
(c.f.(5.11)),where 3132 are the values of B = Bl corresponding to the
2

X,y directions, and y!,y' 1lie between 0 and 1.

The coefficients of UpsUp  are zero (and therefore uD = uD]in the worst case if

(6.6)




_13_

In this case we obtain

2 2

B, = B, = —— (6.7)

1 1 v1 2 1 v2
In the |b1|>|b2| case, taking the fluctuations in AG, CH, AB, CB
to be zero (Fig. 7), with the same B functions as before, we have
uD = u-v, (u,-u,)-v_(u,-u.)+a_V (u ) +a, v (u )

D 1" D A 2D C 31 47270 C

- - - -t
@,y v1(uD uA) @Y v, (u CJ B1a3v1(u ] 82a4v2(u0 C]

- uD—v1(uD-uA](1—a3+ya1)-v2(uD—uCJ(1—a4+ya2] (6.8)

A1) (i) 1-f¢)
- (1'“1_“2+“1k3*“2E4"Y“1“1 Voopupr(1pgrya v u,

-pl)
+ (1 4 yasz u (6.9)

where B;, Bé lie between 0 and 1.

For maximum antidiffusion we seek to make the caefficient' of

uD zero, so that uD is a linear combination of uA and UC' As in
(5.6) we need

. (6.10)
L Rt - _qt N -
1 V7 v2+v1[1 81)(a3 Ya1J+v2(1 62][a4 ya2) 0
so that y is given by

2[1—v1—v2)

Y = . Z
v1(1 v1J+v2[1 v2J

Since '81.82y must be greater than 1 we require v,_,v

1 < 0.375.

2

To summarise, we have designed a two-dimensional anti-diffusive algorithm

with, for longitudinal transfers (i = 1,2 refer to the X,y directions

respectively), the B function
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- =
r .
Y m1n(b1,b2] b1/b2 >y
Bi min(b1.b2] b2/b1 > Bi 7 b1b2 > 0 >
max[b1,b2J otherwise
(0 bybz <103
(6.11)
where (in the 6 = 7/4 case)
2 2
B = 7T By, E=
LI N (6.12)
- " "2 (6.13)
Y & : .
| vilt-v) + v, (1-v3)
and, for lateral transfers, the B function ~
m1nm0d(b1.b2J b1b2 >0
p >
Bi(b1.b21 =
0 b1b2 < 0 J
- (6.14)

4

where the minmod function selects the argument with minimum modulus.

When all the limiters are in operation and under the assumptions made above,

uD = up in a region where |b1|<|b2, and uD = QUA+muC in a region where
b1 > b2' Without such assumption we can still assert that uD is a linear
combination of uD,uA and uC when |b1,<|b2| and uD is a linear combination
n¥f UA'UL and UB when fb1:\{b2;

As in [11, [7], [8] a practical version of the one-dimensional B function
(2.34) is obtained by replacing 2/v by 2 and 1(1-y) by 3 (the so-called
SUPERBEE [7]). Similarly a practical version of the two-dimensional anti-

diffusive B function is obtained by replacing 81, %y y in (6.12) and (6.13)

by 2.
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In full this is

» -
2 mln[b1,b2J b1/b2 > 2
b1b2 > 0
i 2
B,(b,,b) = & 2min(by.by) Pp/by 2 2 {
i 7172
max(b1,b2] otherwise
4

for longitudinal transfers, (where now v1,v2 have to be below 0.3 for LB),

while for lateral transfers

minmod(b,,b.}
172 b,b, > 0 1
B(b1,b2) =

0 b1b2 <0 J

These could be termed 2-D Superbee.
The anti-diffusive limiters are of principal interest in the case of
contact discontinuities since, for shocks, compression is zaatomatically built

in to the algorithm via accuracy and conservation and safe limiters are

sufficient. Sweby [8] gives a full discussion of many of these points.

(6.15)

(6.16



_16_

7. Scalar Shock Recognition

Much of the above analysis is written down for one-signed values of

\Y but there is little or no difficulty in formally extending the procedures

1 Voo
to general v V,. Essentially all that is needed is careful respect of the

17 72
sign of Vv when assigning increments and making transfers and the replacement
of Vv in coefficients by 'v] - Of course not all the results in previous
sections automatically go through: each needs to be checked individually.
Also, conditions like b,'b2 ¢ 0 in (5.1) will be satisfied at shocks and
expansions, causing further variations in conditions and results (see [3]).

A significant property of the first order séheme in one dimension (see [3})
is its capability of recognising an isolated shock by matching the shock condition
exactly, in the sense described below. We now show that this property is retained
in two dimensions with the present scheme.

The first order scheme may be summarised in the steps

1. Compute Q‘ (7.1)

2. Increment u at the downwind point by ¢ .

In one dimension

At

4 i3 [FD - F.) (7.2)

A

(see Fig. 2 and equations (2.6), (2.7)). If the data arises from a simple
shock wave between the points D and A moving with speed S* and separating

constant states Ug and uA, then the flux per unit width swept out in time

At is

- SxAt (uD - uAJ (7.3}

which, because of the jump relation

(Fy = FR) =S, (ug - u,) (7.4)

A X

reduces to the ¢ of (7.2), Thus the first step of (7.1) calculates the
correct flux in this case as well as in the case of smooth data. After step

2 of (7.1) has been taken we may say that the scheme moves the shock at the correct
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shock speed Sx'

Suppose now that a shock separating constant states uL and up Mmoves
across a two-dimensional region with speed S at an angle B to the direction
of the grid (see Fig. 8). The shock conditions are
A F=sAu
n : (7.5)
A 9;= 0
n
where é;' and are the components of (F,G) perpendicular and parallel to

the shock, and An refers to differencing in the n direction, perpendicular

to the shock i.e. Anu = u. -u

R L

The part of the shock between P ‘and 'l sweeps out flux at the rate

- SAt PQ A u
o = - At (Ax sin B + Ay cos B]AHS* (7.8)
by the jump relation
A F= A .
ﬁ? S 4 u (7.7)
and the geometric relation
PQ = Ax sin B + Ay cos B ; (7.8)
here B < tan-1 (Ay/Ax) . Dt Ct
Bl
N
Fig. 8
A D
-J P
3

C
To relate Sth F and G we use

F=?‘oosB-%sinB, G=\7'sin8+%cosf3
(7.

7.9)

so that AF =S cos B A u, A G =S5 sin B A u (7.10)
n n n n
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since, across the shock, ﬂq;; = 0.

The flux rate (7.6) now becomes

- At (AxA G + AyA F)
n n

(7.12}
= - At[Ax(GD-GC) + Ay(FD-FAJ] ’
namely, the ¢ of (2.6) in this particular case.
The part of the shock between § and R sweeps out flux at a rate
- SAt QRAnu
= - At Ay cos B Anéf
= - At Ay AnF
= - At Ay (FD,- FA,) , (7.12)
using (7.10) and the fact that
OR = Ay cos B (7.13)

(7.12) is again the ¢ of (2.6) in this case.

In each of the cases above u receives increments at D and at D'
in accordance with step 2 of (7.1) which effectively move the shock with the
correct speed S.

The part of the shock between R and S is treated as for PR and essentially
PR and QR are the only types of shock crossing that can occur. The part of the
shock in the rectangle A'B'C'D' of Fig. 8 is covered by QR and RS. If B <tan_1[Ay/Aﬁ
and the shock crosses one of the rectangles from left to right completely, the
situation is as in (7.12) above with x, G replacing vy, F.

In all cases, therefore, the ¢ of (2.6) not only estimates the flux
for smooth flows but also calculates it exactly for oblique shocks separating
constant states. Step 2 of (7.1) then ensures that the shock is advanced at the
correct speed . S in accordance with the jump condition. With regard to the angle B8,
it was argued in [2] that a scalar shock should be aligned with contours of u: hence
B may be obtained from a contouring routine. However, apart from a possible tuning
ol the algorithm in which the angle 6 of (3.3) is chosen relative to B, it is not

hecessary to know B for the scalar shock recognition argument to hold.
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For time-split schemes as the result of commuting steps 1 and 2

of (7.1), values of u in front of the shock are updated incorrectly: the

shock will be distorted and may lose its linear character, although because of

conservation it will on average move with the correct speed.

8. Shock Recognition for Systems

Turning to systems of conservation laws in two dimensions, of the

form

u +F +G =0,

-t —x =y
we aim for a decomposition of the system into a number of independent scalar
equations, each of which can be solved by the procedures described above
and the contributions superimposed. In one dimension Roe [3] has shown that
the essential features of shock capturing and tracking can be obtained from an

approximate Jacobian A, called the Roe matrix, which is an extension of

one of the Jacobian matrices A,B appearing in the version

u, + Au +Bu =0 (8
=t X =y

of (8.1), where A,B are given by
A=-9 g_.d& (8

-~

In Roe’'s scheme A is a function of two discrete u values, EL and

Yo, with a number of crucial properties, most importantly the shock recognition

property
A(uL.uRJ[EL-gRJ = EL = ER (8
which is used as follows. By the expansion
aoosp o Le o
where éi are the eigenvectors of A[UL,UR] and ai are coefficients,
we have from (8.4)
(8

B k- g 19385

where Xi are the eigenvalues of Al(u ,uR). Each component 4 g, 1in (8.5)
i d

L

Is updated as an approximate solution of the differential equation

(8.1)

.2)

.3)

.4)

.6)
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3[(1181) - (aaielJ i (8-7]
= —— + A e = u‘
at il dx

the resulting increments being brought together using (8.5).
In two dimensions this idea has been used via time-splitting [111, [12] to
achieve very good results in difficult problems involving the Euler equations.

Here we seek a more truly two-dimensional approach.

The key relationship in Roe's approach is the condition

Ajlag

) (8.8)

Jy = ¢ L

Yoty = (B
where the subscript i refers to the e, component of the vector concerned.
It is (8.8) which tells us that, in one dimension for a simple shock wave moving
with speed Ai. shocks are recognised exactly (c.f. §7).

To extend the idea to systems in two dimensions we may use the rotated grid

idea together with a suitable Roe Matrix. In the rotated co-ordinates (c.f. (7.5))

a system like (8.2) which is invariant under co-ordinate rotations becomes

g+ 4u = 0, (8.9)
where A=Acos B +Bsing |, (8.10)

so that we must evidently look for A with the property

Aly ~ud = Z - F . (8.11)

(c.f. (7.4), (8.5) and (8.8)).
We illustrate with the Euler equations for a perfect gas (c.f. [31), for

which, in the usual notation, u = (D.DU.DV.e]',E = (pu, p + pu?, puv, u(p+eJJT,

G = (pv, puv, p+pv?,vip+e)), and e = ?1 + %pqz)(q2 = u?+v?). Using the
a2 !
enthalpy H = 1" 3q2. the eigenvectors of A are
1 g 1
E1,2 ) u*acos B EB - asing E~4 ) u
Vigsin g -acosg v (8.12)
Hta(ucosB+vsinBL Ha(usinB—VCDSB)J %Q2J

(where & 1is the speed of sound) and the corresponding eigenvalues are

A1 5 ucosB + vsinfl + g4, Ag o= Ay ucosp + vsinp . (8.13)
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These correspond respectively to two Mach waves, a slip line and a contact.

Replacing p, u, v, H in JA by 5, u, v, H, where

+‘

1
f o+ p2
R.R (8.14)

p
as in [3], leads to _& with the property (8.11): the eigenvectors and
eigenvalues of Ja_ are (8.12), (8.13) with the same replacements. For further

details, see the Appendix.
The procedure we propose is as follows. For each pair of points P,Q

at the extremes of a side of one of the rectangles of Fig. 2, we evaluate
Au = u_ - u (8.15)
This is then projected onto the eigenvectors (8.12) with the quantities u, v, H

taking their average values given by (8.14): (a® is given by (A44) of the Appendix).

The coefficients are 01,02,03,04 where

Ap pA .

o, = 3 ,:aT = ) (ucosB+v31nB)_J +

(8.16)

Ap pA .

02 =1 Pl Y (ucosB+vs1nB£]

= PA(using- - pp- LR
94 EA(us1nB vcosB) 9, Ap = ﬁj
all values being average values and p being given by
B - oH - o . (8.17)

y-1
The projections Oigi are then treated as follows. For each individual
component of one of these projections, say, Oieij' we take the appropriate QPQ

occurring in (2.6) to be

(%E]Aicieij (8.18)
and increment uj accordingly. If the angle B8 is ignored, as in time-split
schemes, then apart from possible errors in the shock speeds, as discussed in the
previous section, incorrect physical situations are described. For example,
an obligue plane Mach wave, with EL T Ug proportional to e, if decomposed

into components alang the eigenvectors corresponding to 8 = 0, gives
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1 "0 1
u-a 0 u+a
$(1-cosB) v + sinB a + 3(1-cosB)| v (8.19)
Uﬁ—ua av _ H+ua

and appears to be composed of two Mach waves and a slip line. I am indebted
to P.L. Roe for this example.
There remains the question of the angle B which, in the case of systems,
is not uniquely defined. 1In ref. [9] Davis carries the suggestion that, in the case
of a shock, the angle B should be chosen such that the tangential component of
the velocity is continuous. This is easy to implement within the details of

the present scheme since, for any side AD, an angle B8 is obtained from

jw)

tan B = U—A (8.20)

and decomposition of the local fluctuation onto the eigenvectors of 4. follows

at once.

If the discontinuity is a slip line the decomposition is redundant but

the B orientation (or its 90° rotation) is still appropriate.

9. To summarise, the scheme proposed here for a system of equations consists

of:-

(i) the evaluations of fluctuations FD - FA' GD - GC etc. (see Fig. 5)

(ii) calculation of their projections onto the eigenvectors of V;L , (c.f.
(8.12)).

(iii) a first order directed scheme for each projection (see (7.1)).

(iv) higher order or anti-diffusive transters for each projection.

(v) recombination if increments.



10. Numerical Results
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11. Conclusion

In this report we have considered a fully two-dimensional scheme
for conservation laws which is either second order accurate everywhere
or anti-diffusive and second order accurate except close to extrema. This
scheme has an LB property from which it is easy to deduce a maximum principle:
approximations therefore remain bounded.

The capturing of two-dimensional shocks with such a scheme has been
analysed andfa suitable wave-splitting technique for systems of two-dimensional

conservation laws has been described.

Finally, we consider some of the advantages and disadvantages of the
scheme. The difficulties of shock capture in -two dimensions have already been
discussed. The limitation of the scheme to regular grids is a strong
disadvantage at present but it is hoped that the scheme may be adapted for
orthogonal curvilinear grids. Also there are hopes that a multigrid method
may readily be attached to the method in the case of steady problems.

The case for a fully two-dimensional scheme rests onrotationa;ﬂaccuracy
and a better treatment of aeblique shocks. A time-splitting techniqgue,

. although offering slightly larger time steps, may get
oblique shock'épeeds wrong,and a wave-splitting version of such a scheme will,

as we have seen, process components in an inappropriate way physically.
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APPENDIX

In this Appendix we construct the two-dimensional wave decomposition for the

Euler equations.

(see '§8) whers

From (A3 and [A4J

and, similarly,:

which leads to

Now consider (A6). ::Using

First we seek 01, 02, 03, 04 such that
dp =g, 1 + 0 1 + 0 r1
S(pu) u-ac u+ac as u
S(pv) v-as v+as -ac v
s [H-ua | (H+ua| | -av |_3g?]
(A1)
c=cosB,s=sinB , U =ucosB + v sin B,V=-usinB*vcosB . (A2)
§p = g, + 0, ¢ % (A3)
§(pu) = 01[u—acJ + 02(u+acl + oshs + O,u (A4)
§(pv) = 01(v—as] + 02(v+asJ - Oqac + A (A5)
Se = 0, (H-Ua) + 0,(Hsla) = 0zaV + o,3q2, (AB)-;-;
§(pu)i= ubp - [01—02Jac + 0 (A7) -
S(pv) = vbp - (01-02]as - Og (A8)
- [01—02]30 + csas = pdu + 0(82) (A9)
- (01—02]a5 - Ogac = pdv + 0(62), (A10)
Solving for -[01-02] and Ogs
- [01—02] = p§W/a + 0(62) (A11):
03 = -p(8V)/a + 0(62) (A12)
= az 142 = _L 2
H Y7 * i, e =gEpe irq (A13)




we have

Y Y -1

which, using (A11) and (A12) reduces to

a? 1
f°1+02)(Y-1 * *q’>* TqiT T 7TT 0P ¢ datep ¢ 0l6t)y

(A15) and (A3) may then be solved for o4 * 0, and Oy yielding

Q
+

Q
I

- 8B ges2)
a

Q
n

Gp- %;E + 0(82).

df.y)+0[6?

(=]

P.,e 9+ 0(62) .
a

We now seek aygfééé-vaiues 0? 01, 02. 03. 04, of the form

From (A11) and (A17) we find

Q

n

.
24

Q

]

[
.mIU

o1=£A_B_eég,;, =%._E&_LL

a2 a az a

- o ~ A
(¢} = -e V' 64 Ap - tR
3 ~ az
3 .
such that
AE - z Ui Ei
Ag: ) i % &y
(c.f. 8.12), where
&I =U - a, Az = U + a, As N A4 ] U "-;

In what follows all quantities except those involving A will be assumed to take

these average values.

2
% $p + $8(pq?) = (0,+0,) ( = %q’) ~(0,70,)Ua - ogav + 04307,

{A1¢

(A1E

(A16

(A17

(A18

(A19

(A20)

(A21)

(A22)



=3= o

pU
Now g‘ = F cosB + G sinB = pc + pul (A 23)
ps + pvU
(p+telu |
and to satisfy (A21) we need both
Ap= 01 + 02 + qq (A24)
A(pu) = [u-ac]U1 + [u+ac)02 + asdy + uo, (A25)
Alpv) = (v-as)o, + (v+as)o, - aco, + vo, (A26)
de = [H—aU)U1 + (H+aUJ02 - avog + §q204 (A27)
and
Alpy) = (U—a]o1 + (U+a]02 + Uo4 (A28)
A(pc+pul) = (U-eJ°1(u—ac] + (U+a)o,(u+ac) + U[03as404uJ (A29)
A(ps+pwlU) = (U-a]°1(V—as]+(U+a]°2[v+as] + U[-03a¢+04VJ (A30)
A((p+8)U) = (U-a)o, (H-aU) + (U+a)o, (H+aU) + uoaav\+ Q04%q’

(A24) is automatically satisfied and (A25) x cosB + (A26) x sinB
which is A(pU) = fAu\+:u&p
Similarly (A25) x sinB + (A26) x cosB gives
A(pV) = pAV + vap ,
(A27) can be re-arranged to give
A(pV2) = 20VAV + V24p
We thus have to solve (A29) to (A34). Now (A29) x cosB + (A30) x sinB
AlpU2) = 2pUAU + U24p
and (A28) x sinB - (A30) x cosB gives
A(pUV) = pUAV + pVAU + UVAp
Finally (A31) can be rearranged to gilve
A(PUH) = PHAU + UA(PH).
We now have to solve (A32) to (A37).

(A32) and (A35) taken together yield
J =/3LUL * YoRUg
o

(A31)

giVBS (AZB]. a

(A32) .

(A33)

(A34)

gives

(A35)

(A36)

(A37)

(A38)




