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ABSTRACT

The Finite Element Method for compressible inviscid fluid is
developed. It is based on the variational principle using Clebsch
variables. The variational principle gives not only eguations of
motion but also conservation laws hence it can be used to describe
shocks. It is shown that the same equations can be used for both
supersonic and subsonic flow without the aid of added dissipation.

In order to study the accuracy of the method the one-dimensional steady
flow is calculated. The iterative procedure adopted here results
quite naturally in a marching algorithm for supersonic flow and an

"elliptic" algorithm for subsonic flow: .
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1. Introduction

The aim of this paper is to describe a Finite Element Method (F.E.M.)
for solving ideal compressible inviscid fluid flows. Any such method consists
of three parts: (a) choosing a variaticnal principle, which adequately
describes the flow, (b) choosing finite elements to approximate the solution
and (c) a method of solving the resulting non-linear equations. These three
parts are not entirely independent since the choice of variational principle
to some extent predetermines the choice of finite elements and the method of

solving the non-linear equations thus obtained.

It is, of course, possible to adopt a different strategy when the
variational principle for the problem is known, namely, first to obtain the
equations of motion and conservation laws and then to approximate these
equations either by finite differences or by finite elements (the weak form
of the differential equations - Petrov-Galerkin method). This strategy does not
in fact require knowledge of the variational principle - it is enough to know
the equations of motion to proceed with the solution. A disadvantage of this
strategy is that the choice of a test space for non-self-adjoint or non-linear

equations is not clear.

The method proposed here is based on the variational principle derived
by Detyna (1881). It is a physical variational-principle, therefore it can
be approximated by the Galerkin method and minimalization procedure can be

understood in terms of physical quantities.

A simplified form of this variational principle for irrotational flow -
Bateman's principle, Bateman (1929), has already been used successfully by many
authors, e.g. Jameson (19881), Williams (1878). The resulting algorithms are
fast and accurate. It is perhaps worth pointing out here that the mathematical
structure of potential equations is simpler than that of Euler's irrotational
equations: transonic potential equations are mixed elliptic-hyperbolic while

Euler's irrotational equations are mixed hybrid-hyperbolic.

Unfortunately, the potential equations cannot describe shocks since the
latter generate vorticity. Even if shocks are weak or absent the assumption of
irrotationality cannot be valid in many practical flows. The proposed

variational method should overcome these difficulties.



It is preferable to have a physical variational principle since then a
Hamiltonian H can also be calculated. A Hamiltonian H depends on conjugate
pairs of variables: potentials qd and their conjugate momenta pd,

=1, 2,... N. In that formulation, the equations of motion are
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In other words, equations of motion resulting from a physical variational
principle can be cast in pairs such that variation with respect to qa

results in an equation describing the evolution of Py and vice versa. From
the point of view of F.E.M. one could say that trial functions for qa are

test functions for Po and vice versa. This symmetry can be exploited in
numerical schemes. Buneman (1980) pointed out that if Hamilton equations exist
they can always be approximated by a finite difference leapfrog scheme, a method
with well understood stability and accuracy. The method proposed here is a

F.E.M. exploiting the same symmetry of the above eguations.

The variational principle and resulting eguations are described in the next
section, and discontinuous solutions are dealt with in Section 3. In the final
part of this paper a F.E.M. solution for one-dimensional steady flow is given.
Although the problem itself is trivial, the method of solution has all the
main features of the solution of the more general problem and provides the basis

for solving two and three-dimensional problems.

2. Variational Principle

2.1 Introduction

It has been shown, Detyna (1981), that the evolution of an inviscid ideal

fluid without spin can be described by the variational principle

6A = 6[ dt [ dsx L =20 : (2.1)

where the Lagrangian L 1is g

L =-p[3(V$ +aVB + SVAI? + E]
+ (3.9 + ad,B + 83,20, - (2.2)

where ¢, a, B and A are certain "potential” functions with no particular
physical meaning, p and S are the fluid density and entropy respectively

and E = E(p,S) 1is the internal energy.



It is noticeable that the Lagrangian (2.2) does not depend on the velocity
VvV, pressure p or other familiar functions commonly used for describing
fluids. We shall deal with this problem in Section 2.3 but it is useful to define

the velocity v now in order to simplify notation.

The momentum of a fluid is m = pv but, on the other hand, it is
defined by the invariance of L under translations of co-ordinates as

oL
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where Vp A=1,2,...,6, stands for a, B, S, A, p and ¢. (Repeated
indices imply summation over the whole range of the indices). With the aid

of (2.2) we get
m= - p(Vé + SVA + aVg)
hence we can identify velocity as

v = - (V¢ + SVA + aVB) (2.3)

2.2 Equations of motion

By seeking the stationary value of the action A in (2.1) with the

Lagrangian (2.2) we get the equations of motion:

8¢ 3P ¥ Velpyv) = 0 (2.4)
Sh: 8, (pS) + V- (pSv) = O (2.5)
8B: Bt(pa] + Velpoav) =0 (2.86)
Sp: B0 *+ ad.B + S3,A = iv2 + h (2.7)
6S: A+ VWA = T (2.8)
Sa: 9,8 + V-¥B = 0 (2.9)

where v 1is defined by (2.3} and specific enthalpy h and temperature T are
defined by h = ap[pE] and T = BSE. The equation (2.7) can be modified by
subtracting from it the last two equatiocns multiplied by S and « respectively

8.9 *+ veVp = h - ST -'4v2 . (2.7a)
The equations (2.4) to (2.9) can be divided into two groups: the first three
equations (2.4) to (2.8) describe conservation of mass, entropy and function
o respectively, while the last three equations (2.7) to (2.9) describe the
evolution of potentials ¢, A and B: they are all in the form (at + veVlf =

r.h.s. But from the point of view of F.E.M. it is more interesting to note

that these equations form three pairs: variation with respect to A gives



the eguation for S and vice versa - equations (2.5) and (2.B); the same
applies to the pair o and B - equations (2.6) and (2.9). The third pair
of equations (2.4) and (2.7) does not lend itself to the seme interpretation
unless we use equations (2.8]) and (2.9) to obtain equation (2.7a) which clearly
describes the evolution of ¢ while (2.4) is the equation for p. The lack

of symmetry between equations (2.4) and (2.7) is due to the use of S and g
as independent variables rather than S* = pS and o* = pa which are clearly
the conjugate momenta to A and 8. If S* and o* were used as independent
variables the symmetry of the Hamiltonian equations would be preserved, Detyna 1981,
but the Lagrangian L would contain terms of the type S*/p and o*/p which
might prove cumbersome in F.E. approximation unless only piece-wise constants

were used for trial functions for op.

2.3 Conservation laws

It has been shown, Detyna (1881), that the Lagrangian (2.2) is
invariant under translation of space and time co-ordinates. The first

invariance induces the momentum conservation law

atmi + Vj Tij = 0, (2.10)
where M. = = gL V.y. = pv
i a(atyA) i“A i
and Ty = - —~3£L——-V v, + 8..L = pv v/ + 8, P
13 a(vij) i'A ij 173 1j

In the last formula it is noted that L by virtue of equation (2.7) is
L= -p(ivZ + E) +p(iv2 + h) = p(h-E) = p .
Therefore the pressure p is identified as the Lagrangian itself.
The second invariance induces the energy conservation law
ate + Zf9_= ) (2.11)

where the energy density e and its flux Q are

L :
= 3.y, - L =pivZ + E)
?(?tyA? t7A —
S S sy iy2
L7 5y, T Peda T el )

The Lagrangian (2.2) is also gauge invariant with respect to ¢, A and B
since it only depends on their derivatives. This induces three conservation
laws of mass, entropy and the function o. The form of these laws is identical

to that of the equations (2.4) to (2.6). It should be noted that all the



conservation laws (2.40), (2.74) and (2.4) to (2.6}, with the exception of the
last one, are expressed in terms of physically observable quantities - density,
velocity, etc. The equation ((2.8) is exceptional due to the simplifying

assumption made in the derivation of the function o (spinless fluid).

We shall return to the discussion of the relationship between equations
of motion and conservation laws in Section 3 when we shall deal with dis-

continuities.

2.4 Steady flow

The physical observables (density, velocity, etc.) are time independent
in steady flow. The same cennot be said-for the potentials ¢, A and B -
they may depend on time as long as they form time independent observables.

It was shown, Detyna (1981), that a particularly simple linear time dependence
$p(x,t) » ¢(x)
Blx,t) » B(x) + ¢t
Alx,t) > Alx)

results in identification of variable o with the total enthalpy H. The

above choice is, of course, not unigue.
The variational principle is now
8 ( p[H - 3(v$ + SVA + HVRIZ - E(p,S)] dgx = O (2.12)

and the gquations of motion obtained from this principle are the same as
(2.4) to (2.9) provided that all the time derivatives are neglected (with tHe
exception 9. B which is replaced by unity):

Velpv) = 0 (2.13}
VelpSv) = 0 (2.14)
VelpHy) = 0 (2.15)
iv2Z + h = H (2.186)
VWA = T | (2.17)
Vv = O (2.18)

where H, the total enthalpy, replaces «. This definition is justified by

equation (2.16).

The conservation laws follow in the same manner as in the general case
but we do not have conservation of energy. Instead there is the conservation

law of total enthalpy H due to the gauge invariance of B, eguation (2.15).



Thus although we have one fewer conservation law 1n steady state than in

the time dependent problem, the same physical quantities are conserved in both

cases.
For homenergic flow, H = HU = const, one cen introduce a new potential
* -
¢ = ¢ - HgB (2.19)
in the equation (2.12}):
8 ( p[HD = %(_¢ + Sy})z - E{p,S)]dgx = O (2.20)

which removes the term HVBR. In consequence we do not have equations (2.15)

and (2.18} any longer.

If the flow is also isentropic S = S,O = const then the transformation
o** = 9% -5 (2.21)
also removes the S9V)x term from (2.20) which becomes
8 f [HD - 3Vé+Vp - Elp) 1dgx = 0O ) (2.22)
Q

This is Bateman's variational principle for potential flow. The resulting

equations are just (2.13) and (2.18). (Superscripts * are omitted in 2.20 and 2.22).

3.1 Boundary conditions

It was shown in the previous section that the solution of a flow problem
is determined by six eguations of motion (2.4) to (2.8), subject to appropriate
buundary conditions. The number of unknowns is also six: p> S, a, ¢, A and B.
When these have been solved, the five physical functions required to describe
the flow are then determined uniquely: p and S are part of the solution and
Vv is calculated from equation (2.3). The boundary conditions are, of course,
given in terms of physical variables p, S and Vv, hence in order to apply them
they have to be translated info boundary conditions for our original six
variables. The problem is somewhat complicated by the existence of function o -
although it is not a physical variable it is conserved, see equation (2.8), and
therefore plays the role of a physical variable. Strictly speaking it should be
sald that there are six physical variables p, S, v and o with the appropriate
boundary conditions given for all of them. But since o is not required in the
final description of the flow, an arbitrary boundary condition can be imposed
on it. This complication is absent in steady flow where ¢ becomes a truly

physical quantity - total enthalpy H.



Since the boundary conditions for three functions p, 3 and o (or H) are
given, the remaining three conditions for ¢, g, and X can be calculated {from

equation (2.3)
Vé + 8VA + aVB = -v (3.1)

for given v on the boundary. It is clear that the potentials ¢, X and g are
not determined uniquely by this equation but only up to an arbitrary constant.
This, of course, does not affect the solution since only derivatives of these

potentials are required.

8.2 Discontinuities

I+ boundary conditions are not smooth or flow is supersonic in some
region, discontinuities may develop. In order to find a unique solution a method
of relating values of all variables on both sides of a discontinuity (jump
conditions) has to be established. This is achieved with the aid of the
conservation laws. For the general flow there are seven conservation laws -
four scalar equations (2.4), (2.5), (2.6) and (2.11) and one vector equation
(2.10). In steady flow the number is limited to six since there is no energy
equation (2.11). Integrating these equations over a slim volume enclosing
a discontinuity, the relationships between variables on both sides of this dis-
continuity are obtained. We note that in the general case there are six and in
steady flow five independent variables: p, S, v and o (in general case only).
The total enthalpy H is not an independent variable, see equation (2.18).
Since there is one more equafion than unknowns a solution may not exist. Since
in nature a solution always exists our description must be inadequate: if the
discontinuity is a shock the process is irreversible hence entropy cannot be
conserved. For physical reasons the entropy conservation equation (2.5) is replaced
by

(slz=o0 (3.2)

where [f] stands for the jump in value of quantity +F across the shock. Now
the number of equations and unknowns is the same and if more than one solution
exists the condition (3.2) selects the physical solution. These jump conditions
are the well known Rankine-Hugoniot relations. But these relations describe the
jump in physical variables only and the jump conditions for potentials ¢, A and
B are still unknown. In order to calculate these relations we shall study

the two different types of discontinuities in more detail.



3.2.1 Contact discontinuity
A contact discontinuity is a discontinuity which does not cross stream
lines, or in other words, no matter flows across it. It is seen that all the

equations of motion (2.4) to (2.8) are of the form

d -
T3 Yp " r.h.s. (3.3)
where Ya stands for any of the variables (A = 1, 2, ..., B) and d/ds 1is the

total derivative along the stream line. Since no stream lines cross the

discontinuity all the variables are continuous functions of s and their

y
A
values on either side of the contact discontinuity are determined solely by the

external or internal boundary conditions,

3.2.2 Shocks
A- shock is a discontinuity which crosses stream lines hence, according
to equation (3.3),relationships between all yA's on either side of the shock

are needed.

From momentum conservation equation (2.10) we can deduce that the velocity
vector X“ tangent to the shock surface is continuous. On the other hand the

equation (2.3) for velacity is
Yy o= @y ¢+ 8y A+ ay, 8) (3.4)

where Z" stands for the gradient tangent to the shock surface. Since,
according to the equation (2.8) the function o is continuous, the functions

¢, X and B can be continuous only if S is continuous, Thus the shock

surface with [S] > N has to be treated as an internal boundary and the
potentials ¢, A and B behind the shock have to be recalculated from physical
variables, which are given by Rankine-Hugoniot relations. This is not surprising
since the variational principle (2.1) is contradicted by the entropy condition
(3.2) on the shock surface. Consequently the equations of motion on the shock

surface are not valid.

The details of calculations of the potentials from physical variables

will be given when numerical schemes are developed.

3.3 Dissipation

The method of dealing with shocks descrihed above should prove adequate
numerically. A different approach, not used in this paper, can also be applied.
The conservation law of entropy, equation (2.5), is due to the gauge invariance
of the Lagrangian (2.2) with respect to X. Since shocks do not conserve entropy
we could break that invariance by adding an ad hoc term L, = Af(+) to the

1
Lagrangian (2.2), where f is some function of the physical variables. The



total Lagrangian L + L1 is not gauge invariant with respect to A and,
consequently, there is no entropy conservation law. The equation (2.5) is now

replaced by

Gt(pS] + V+(pSv]) = F . (3.5)
If, for instance, we chose

£ o= KV2T/T

where k 1is a coefficient of heat conduction the equation (3.5) is just the
heat balance equation. Since the temperature T is a function of p and S
the equations (2.7) and (2.8) would also be modified appropriately. The
equation (3.5) is dissipative and the solutions are shock free (at small Mach
numbers) but the flow is no longer described by Euler's equations. One could

choose Kk to be very small so the term L is insignificant in most of the

1
region. But in that case there will be layers where temperature varies

rapidly and V2T is very large thus making L large. These layers are the

/I
"dissipated shocks” since they contain regions where, according to equation
(3.5), the entropy is repidly produced. One suspects that they would be more
difficult to handle numerically than the original equations (2.4) to (2.8)

which admit discontinuities.

4. Finite Element Calculations

4.1 Introduction

The numerical calculatjons based on the variational principle (2.1)
can be divided into two parts. Firstly, the spaces of trial functions
approximating each of the variables in equation (2.2) have to be chosen:
seeking the minimum with respect to arbitrary parameters (nodal values) results-in
a set of non-linear equations. Secondly, the non-linear equations are solved
by an appropriate iterative procedure. A simple example of one dimensional
steady flow calculation is given in this section. The non-linear set of
equations approximating the flow is obtained in the next paragraph and the
remainder of this section is devoted to solving these equations for various
types of flow. Since the aim of this paper is to develop a general method
of calculating complicated flows, a deliberate effort has been made in this
example not to exploit the simplicity of one-dimensional steady flow. Thaf
is to say, some of the equations here could have been solved much more simply
but then a similar simplification would not be available in two or three

dimensional flow calculations.



Since one-dimensional flow is necessarily homenergetic, the Lagrangian
is given by equation (2.20) with all the variables depending only on one
co-ordinate; hence the integration over the other two co-ordinates can be
performed trivially. Depending on the co-ordinate system used a flow in

a uniform pipe, a section of cylinder or a cone can be described by
5 [ F(x]p[%(¢* + SAX)Z + E(p,S) -~ Ho]dx =0, (4.1)

where x 1is the independent co-ordinate, subscript x stands for a

derivative with respect to x and function F(x) is related to the Jacobian

of transformation. For linear, cylindrical or conical flow A(x) = 1, x or x2
respectively. Sometimes a more general flow in a pipe with an arbitrarily varying
cross-section is studied iﬁ the literature, see for example Courant and
Friedrich (1976). Such a pipe is approximated by pieces of cones joined
together so that F(x) approximates the area of cross-section as a function

of the léngth of the pipe. Such an approximation cannot be treated rigarously
with the variational principle since it requires different momentum equations

in different parts of the pipe. Although valuable practical results can be
obtained by skilful use of this approximation, it will not be studied

here since our aim is to develop a method of solving exact equations for

two or three dimensional flow rather than to find a good one-dimensional

approximation to them.

Since the one-dimensional flows in a uniform pipe, a section of
cylinder or a cone are very similar from a numerical point of view, only

the case A(x) = 1 dis calculated in this section.

4,2 Finite element approximation

Let the flow take place between x = XO and X = XN and let this

region be divided into N elements: [xU,x1), (xq,xz], v (xN_ .xN], where

Il
X4 is a position of the i-th node.

The Lagrangian (4.1) depends on functions p and S and on first
derivatives of functions ¢ and A, therefore the simplest F.E. that can
approximate these functions caonsistently are piece-wise constants for p

and S and piece-wise linear functions for ¢ and A;

N .

plx) = gﬁq p; C;(x) (4.2)
N .

$(x) = 2 $; 0, (x) (4.3)

. 1=0

N N

S(x) = Z_ 8,6,0x) 5 Ax) = Z A, 0 (x) (4.4)
i=1 i=0

-10-.



where Py Si and ¢i‘ Ai are nodal values while Ci(x] and oi(x]

are plecewise constants and piecewise linear respectively.

1 Xo_ 4 S X < X,
C,(x) = for i i (4.5)
0 X> %, or x< X34
5 X < X< X
, i-1 i
i-1
- - X
@i(XJ T for AT (4.8)
- X i i+1
i
X < X or x> X

The approximations for S(x) and A (x) are identicel to those for p (x)
and ¢ (x), equation (4.4). It is seen that ¢, (or AiJ is the

i
value of ¢ (x) (or X (x)) at the point x = x,; whereas Py (or SiJ is

i
the value of p (x) (or S(x)) between x = X;_q and x = x.. For
that reason there are N values of p, or Si but N + 1 values of ¢i
or A,.
i

Introducing (4.2) to (4.4) into the Lagrangian (4.1) and integrating

over x we get the action A:

N N :
A = J L dx = E piLHO-%vf-Efpi,SiﬂAxi, (4.7)
X i=1
where vi sgands for
vy = (¢i - ¢i—1 + Si[li = Ai_q))/Axi (4.8)

and Ax, = x, - X
i i

Now the approximate eguations of motion can be obtained by finding a

stationary value of the sum (4.7):

A . = g, 2 B .

55, ~ Hg ~2vyo~hy =0 (4.9)
1

3A i i _

59, . Pi-1Vi-1 " PyYy 70 (4.10)
i-1

o, = osLv. v, - X ) - T.Ax,1°=0 (4.11)

35, 1FVithy T Ay B%5 :

aA ) )

M, Pi-121-1Vi-q ~P4YyS; = O (4.12)

_1']— * .



where hi and Tj are the local enthalpy and temperature respectively:

oD b Y-1 S./c
hi = api piE[pi, Si) 77 Py e i’ v
I R el Y-1 S./c

It is seen that equation [4.12) by virtue of equation (4.10) reduces to

S. =S

in the absence of shocks.

In the remainder of this section methods of solving the above

equations for subsonic, supersonic and transonic flows are given.

4.3 Solutions of equations of motion

The equations (4.8) to (4.12) are non-linear hence an iterative

method of solution is required. We shall adopt simple seguential Newton

iterations although a higher order method could be used, but then it would

be difficult to extend such a method to two- or three-dimensional flow.
_ We shall adopt different strategies for subsonic and supersonic flaows in

order to use the boundary conditions in each case in a natural way.
rd

4.3.1 Supersonic flow

It has been noted earlier that the equation (4.9), which is the

findte element approximation of the equation (2.7), can be regarded as an

equation for the potential ¢. Therefore if a trial solution ¢i’ Py Si

(4.13)

(4.14)

(4.12a)

and Ai is given the next approximafion for ¢ can be obtained by introducing

¢ = ¢, + 6o,

into eguation (4.9) and calculating 6¢i. (The usual notation of subscript

denoting the old and superscript denoting the new values is adopted here).

Neglecting terms nonlinear in 8¢ we get
- = 1 2 e =
vi[6¢i 6¢i—1] (avi i HO]Axi = Ry

If the value ¢0 on the boundary is given then equation (4.186) can be

solved by the marching procedure:

It

80 = 8¢5 4 * Ry/vy

._/]2_

(4.15)

(4.16)

(4.17)



Alternatively, with the aid of equaticns -(4.11) and (4.15), we get

& AW e, g B B
vi(¢ -~ ) = ( ;vi + hi 5T, HDJAxi (4.18)

which is an equation for the new values of ¢. We note that the above
equation is just the finite element approximation to the eguation (2.7a)

which described the evolution of ¢ along streamlines.

The remaining equations (4.10) to (4.12) treated in the same manner

give
i i1 -
TV, TP Vi4 1] (4.19)
i i-1s
\ZEC A S Tiax, (4.20)
st wgl?ap (4.21)

All the equations (4.18) to (4.21) can be solved by marching provided that

the boundary values ¢D' p1'~AO and S are given. The potentials ¢

1
and X are determined up to arbitrary constants which can be taken to be
¢U and AD. As is well known the three boundary values G S,l and vy
ensure existence and uniqueness of the solution for supersonic flow. The

third boundary value is necessary to determine the total enthalpy

H. = iv

2
0 + h1(p1, 811

1
Having solved equations (4.18) to (4.21) the iteration is repeated until

the desired accuracy is obtained.

4.3.2 Subsonic flow

For subsonic flow we adopt a different iterative procedure in order
to suit the different natural boundary conditions. We note that the equation
(4.9) depends on a single value of Py while the equation (4.10) depends on

three consecutive values of ¢: ¢i—2’ $.

-1 and ¢i. Therefore they

can be solved as follows:

o ~1
p- = {—~—-(H0 - %Vizle Si/cv} 1 Grt) (4.22)
Pi=q i-2 Pi-1 1 P14
Ax, ¢ AX i Y Ax = . (4.23)
i-1 i-1 i

T3 Siog TigNVig T eySiTi/Yy

where in the last equation use of equation (4.11) has heen made again.

_4‘3_



"The equation (4.22) is an algebraic equation and equation (4.23)
is a three point "elliptic" equation requiring BDirichlet or Newmnan boundary
conditions for unigueness. These are natural conditions for subsonic flow.
The remaining equations (4.11) and (4.12) for X and S are solved in the
same manner as in the supersonic case, i.e. using equations (4.20) and (4.21),
for the following reason: the potential A is given up to an arbitrary
constant which can be taken to be A ; the entropy S is also given at the

0

inflow as 81. Therefore the natural boundary conditions are for ) and S

both given at the inflow. Dirichlet boundary conditions for entropy S (or

eguivalently for A), given at S and SN, are not physically admissible

1
since the subsonic flow may contain a supersonic region which generates
entropy, thus SN is not known a priori. (This does not occur in one-
dimensional flow but cannot be excluded in two- or three-dimensional flow).

4.3.3 " Transonic flow

Let us suppose the flow between X and xj is supersonic and

between xj and XN subsonic. We note that an equation (4.9) is obtained
by variation with respect to Py This equation is then used in the supersonic
case for obtaining a new value for ¢i, equation (4.18), or in the subsonic
case for a new value CHp equation (4.22). This can be shown graphically,

Fig. 1, by drawing an arrow from point Ps ("x" on the top line) to ¢i or

Py ("x" or "0" on the bottom line). The top line here shows which variation
was used for obtaining an equation and the bottom line which variable was
calculated from that equation. Potential ¢ is represented by "0” at nodal

points and density p by "x" between them.

X X
*p " %2 X3 X3 N-1 N
@ T a1 0 e 0—-—-?-——-0——;~Y—o——-x e S D H—O
\\\ v v « L L g W W _;: -

H——O——K—O K—=0 K @— O ——H—O— KO K
T 1 2 2 R i1 NN
€—— supersonic flow ~——7¥— subsonic flow T

Fig. 1 - Graphical description of the equations used for transonic flow. The
potentials ¢, and A; are at the nodal points X4 (marked with symbol "0");
density p ; and entropy Si are between nodal points (marked "x"). The values
at X, are given (¢g, Ay 4 and 81].
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The equation (4.23) for 5“2 . $—1 and 5’ is obtained from (4.10)

by taking a variation with respect to '&fﬁ . Although it is a three point
formula it can be regarded as an equation for ¢i_1 as it is a central
variable in an elliptic operator.  For that reason the arrow from ¢i in
Fig. 1 points at ¢i solution in the subsonic region. It is seen that
the eguation (4.10) at point Xj' where flow changes from supersonic to
subsonic, is not used. On the other hand the equation for ¢N is missing
since (4.23) could only be used if a boundary condition were known. This is
not the case as the flow started as supersonic hence Cauchy conditions are
used at the x = X0 boundary alpne. But the mass is conserved by virtue
of eguation (4.10) hence the spare equation at x = ><j can be used for
calculation of ¢N:

pjvj - pNVN =0

or after expanding

pI_ 371 3y CeN  NET Ny 5
A (¢ ¢ ) i (¢ ¢ ) = (4.24)
J N
= ijjTj/Vj - pNSNTN/vN

The values ¢D and 04 are given as boundary conditions hence we have
a complete set of eguations for all values of ¢ and p. The solution
for Si and Ai is obtqined tfrom (4.20) and (4.21) regardless of the
type of flow. But if the 'flow changes at x = ><\j from supersonic to

subsonic a shock may be present at that point. In that case the entropy

is not conserved and its increase can be calculated from conservation laws.

A simple formula in terms of density alone is

L P I = R-u . 5
5 §7 = 48,4 = C, &0 g0y - C 0 R (4.25)
- 2 = _
where R = pj+1/pj and p% = (y 1)/0y + 1)

This formula is used at the shock point 1i = j instead of the conservation
law (4.21). We note that according to (4.25)

> >
A Sj+1 <0 for pj+1 < pj (4.26)

and since the entropy cannot decrease across the shock the density cannot

decrease either. Therefare if we replace the equation (4.25) by

J+1 h|

s - g8’ = Asj+,| for A4S, .20
J (4.27)

J+1 J+1 _ &J

o “.& > S = 5  for ASJ.+1 <0
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we ensure that the solutien does not admit expansion shocks.

4.3.4 Shocks in transonic flow

The choice of finite elements, equations (4.2) to (4.8) is such
that if a discontinuity in density or velocity is present it must coincide
with one of the nodal points X, *8ince the position of a shock in one
dimensional flow is not determined by the flow itself we shall add a
supplementary condition to the equations (4.9) to (4.12) in order to fix the
shock position. Such a condition can, for instance, be the requirement that
the total mass in the flow does not change. That is to say

? p, Ax, =m (4.28)
- i ™1 :
i=1

for a;l levels of iterations.

Let us suppose that atter one iteration we have a new density
distribution p*i such that
z p*iAxi = m, = m + Am (4.29)
i
The excess mass Am has to be subtracted from the distribution p*i
in order to satisfy the equation (4.28). For positive Am it is subtracted
“from p*j+1 and for negative Am we add -Am to p*j where j dis the last
supersonic element. This procedure ensures that the total mass is conserved,
equation (4.28), and for large enough |Am| the sonic point xj is moved
to xj_1 or Xj+1 depending on the sign of Am. At the end of the iterations
(when sufficient accuracy has been obtained) the solution will converge to
the exact one everywhere except on element j where the density pj and
consequently all other variables have an artificial value due to condition
(4.28). This is because the shock point lies inside the element j (or j + 1),
see Fig. 2, and the flow is a mixture of supersonic and subsonic flow. In
order to obtain a simple solution a shock fitting procedure is used: the
Sqnic point Xj in Fig. 2 is moved to a new position x,. This new position

xJ = Xy 1s calculated assuming that the total mass m remains the same

and the new density pJ in Fig. 2a (or pJ+1 in Fig. 2b) is the same as in
neighbouring element Jj - 1 (or Jj + 2). This procedure "divides” the hybrid
element into its supersonic and subsonic part. After the shift of point xj

to its new position all other variables are recalculated in that element.
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Fig. 2 Details of flow at sonic point.

Xy ~ positlon of shock, p* - sonic density.
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4.4 Numerical results

A Fortran program based on the above method has been used to study

the speed and convergence of the algorithm.

Firstly the program was run without the condition (4.28) with initial

I~

distributions of density, velocity and entropy

= 2
Py p1f1 + 0 xi11 (4.30)
Vi T VqPq/Py
S, =0 1=1,2, «ves N
i

and various Mach numbers greater than unity. o was chosen in such a way
that for i > j pi represented subsonic flow (that is to say for i > j
the sound speed Ci calculated from pi is greater than the critical
speed C, =¢Eﬂ§ﬁ57. This ensures the flow is transonic and the shock point
is at x = xj. A typical cenvergence speed 1s shown on Fig. 4 where e

is the maximum erraor in the total enthalpy
e = |4v2 « h - H|

as a function of the number of iterations J. The straight line on
Fig. 3 is at

- ~0.375J -

€ = 10 Zo.377d

The linear convergence rate is typical for sequential Newton methods and

in this case the error is about halved at each iteration.

In order to study the shock capture and fitting procedure the same
initial distributions (4.30) were used but the iterations were subjected

to the condition (4.28) of the total mass conservation.

The density distributions p(x) for each iteration are shown on Fig.
4. The initial distribution is shown on the first graph marked "0". The
nodal points are distributed randomly between Xg = 0 and Xqo = 12.81.
The position of shock is moved during iterations 1 to 7 from element 9
to element 6, see Table I third column. The shock fitting procedure of

the last paragraph is not used until the average velocity error e

€ = V’Z [vi—vi)z/N
i

is less than 10—2. In this case this occurs at iteration 7, see Table I,
and the nodal point X is moved to a new position at iteration 8. The
"hybrid” element containing shock is found by seeking an element with the

largest error in mass, i.e. the element i for which
PyVs = Pyl
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is largest. The last graph on Fig. 4 shows the density distribution
after the first shock fitting. The error in the shock position is then

1.9 10_3, see Table I.

The convergence rate is also shown on Fig. 5. It is seen that €
diminishes slowly until the shock fitting procedure is used at iteration 8.

At subsequent iterations the error diminishes 1roughly linearly.
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Average errors in velocity distribution and errors in

different iterations.

JABLE T

shock position at

Number Average velocity Error in shock
of iterations errgr position

1 1.2 3.0

> .8 1077 1.8

3 2.2 107" .87

4 5.4 1072 .87

5 3.8 107° .87

6 7.7 1072 -.22

7 4.0 10°7° -.22

8 2.1 10_2 1.9 10_3

9 7.7 107% 1.9 1073

10 1.2 107" 1.9 1973
11 9.7 107° -6.2 107°
12 6.4 100 5.2 107
13 107° 1.0 1078
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Fig. 5 Average error ¢ in Velocity distribution and error in shock

position o as a function of iteration number J. The shock fitlting procedure

is applied from iteration 8 onwards.



