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Abstract

This report contains a comparison of two numerical methods for
the solution of time-dependent partial differentiai equations in one di-
mension using moving finite elements. The first method considered is
the well-known local MFE method. We compare this with a method
which involves a Legendre transformation of the variables in the dif-
ferential equation, followed by solution in the dual space, again using
moving elements before transforming back into the original variables.



1 Introduction

The numerical methods we consider in this report are all used to solve one
dimensional partial differential equations of the form

uy = L(u) u = u{z,t)

where £ is an operator involving only spatial derivatives. We wiil compare
two methods. local MFE and a second method also based on finite elements.
The second method also uses an adaptive grid, but the equations for the
description of the movement of the nodes are calculated in a different solution
space. We first apply a Legendre transformation to the equations. then solve
in the dual space. The method of solution is based on finite elements and
uses the local element basis functions, giving a method similar to local MFE.
After solving in this space. the solution is transformed back to the original
physical variables.

The aim of the second approach is to produce a method with the advan-
tages of MFE but one which is more robust. In using the Legendre transfor-
mation we hope to produce equations which are better to solve, ie. simpler
equations, or those which have a more stable behaviour when solved using
finite elements.

The contents of the report are as follows. After a brief description of
the global MFE equations, we concentrate on the local MFE method. In
this section we also rewrite the partial differential equation in the form of an
integral equation and solve this by local MFE. Since there are many examples
of equations of the type u, = L(u) which produced overturned solutions
hence form shocks, we compare two methods which locate this position. The
second approach. 'VM method’ is then described before we consider the test

problems. Finally the results are given followed by a brief comparison of the
methods.



2 Method 1 : Local MFE
The equations we consider here are of the form
Uy = L(u)
where £ is an operator containing only spatial z derivatives and

u = u(z,t). 2)

We begin by giving a brief description of the global and local MFE methods
in 1 dimension [1][2].

Let U be a piecewise linear approximation to u where U can be written
as
n+1

Ulz,t) =Y a;(t)aj(z,s(t)). 3)

=0
The a; are linear time-dependent basis functions and are defined by

Sy—8y-1
e Si417T . . f
a; s, 8 S TS S (4)
0 otherwise

where s; are the nodal coordinates and a; the nodal heights (see fig. 1).
Differentiating {7 with respect to ¢ gives. after some manipulation 3]

n+1
Ue =) (djay +558;) 9)
J=0
where g, is given by
Bi = —Usq;. (6)

3; is a basis function which has the same support as a;, but unlike o; it
is discontinuous at s; since U, is piecewise constant (see fig. 2). To find
equations for d; and s;, the L, norm of the residual

Ui + L(U)



Is minimised over d; and s; ie. £L(U) is projected into the space of . J
functions. This gives the MFE equations

<a; Ui+ L(U) >=0 o . \
<,Bj,Ut+L:(U)>:0 ) =0...... | 3)

where < .,. > denotes the usual L, inner product. Substituting (3) into (8)
the MFE equations can then be written as a system

Aly)y = g(y) (9)
where
ag
So
anN +1
SN+1

and A is a 2 x 2 block tri-diagonal matrix, with blocks

<oa; > < a;,ﬁj >
Aij =

T <Buai> <88 | )
The g vector is
< ag, L(U) >
< ﬁOa‘C(U) >
g = . (12)

< aN-l-la'C(U) >
< ﬁN-l-la‘C(U) >

Before the system can be solved, the appropriate boundary conditions for
the problem must be applied. which usually results in some overwriting of
entries in the system for the end nodes. This gives the so-called global
MFE equation, which may be solved for a,$ by inverting A, by for example
conjugate gradients. This system can however also be written as a local
method which involves only 2 x 2 matrices (2]. In 1 dimension it can be

shown that the local and global methods are equivalent (4]. We now describe
this local method.



To write the system (9) in a local form. two local basis functions are

mmtroduced and defined by (see fig. 3.)

Sy —T

5. <z < s,
(1) $;=9y-1 Si=1 =T = 3
qD]_é_ .
0 otherwise
. 13)
= I Sj—l S T S 'Sj
(2) 779
@j_l, h
0 otherwise .
These can be combined to give the original basis functions
= 2 (1)
a] — o]_% 1 ¢J+%
i14)
e (2) (1)
Bi= =(m;y &0y +mipid00)
where
a; — aj-
P85 =85

le. m;_y is the gradient within the j — %th element. Wherever the original
basis functions were applied they can be decomposed and the new local
functions can be used. This gives in (8)

<a;, LU) >=< 62, L(U) > + < ¢§1+’%,L'(U) >
'15)

<35 LU >=-m;_y < 6P, LU) > —mjy < 6)) LU) >

(1)
R
Similarly the inner products < «, a; > etc. in the matrix A also decompose
to allow the system (9) to be written as

MTCMy = MTb, (16)

where M and C are 2 x 2 block diagonal matrices staggered with respect to
each other [1][2]. M has entries

1 —m,_1
M; = [ m]_f ] (17)



and C has entries

[ R

=3

{51' = "“j—[) 2 A

1= -18)
0y = B { ; }

with the size and form of the first and last entries being determined by the

boundary conditions. b is a vector of the inner products of the iocal basis
functions with L£(U)

and y is as before. The advantage of (16) is that it can be solved in two
stages. each of which involves decoupled 2 x 2 systems. Firstly write (16) as

CMy=>b (20)

(where M is assumed non-singular, ie. parallelism m;_y = m;,L is not
present). Denoting the element [j — 1, j] as k, we first solve the 2 x 2 systems

Cyrwi = by (21)

)
WE=1 @
W
in each element k, ie. L(U) is projected into the space of ¢ functions locally
within each element. The w,, blocks are then regrouped into vectors

_ [ wl(cz) ] (23)
Wi = (1) &

W1

for

(22)

whose entries are staggered in relation to those of (21) and in the second step
we solve

l\/fj}"j =Wy (24)



. d o . 1 g

for y; =1 7 | at each node . The lobal system has now been reduced 1o

J B J g )
M

a series of local 2 X 2 systems.

The a;,s; can then be found at the new time-levei ov using an ODE sojver
such as Euler's method

Yy =yt + Aty (23)
where n denotes the time-level.

In the moving element methods it is often convenient to rewrite U, in a
Lagrangian framework. This is done by defining a transformation between
z,t and new independent variables £, T by

2(¢,7)
u(§, )

where the partial derivatives satisfy

X

=i (26)

Il

Ou 04  9u0¢ ot 9z du

— o2 JROL  Ou.  Ozou 27
9t ~or TBEdt ' BE ~ O¢ ba (27)
and hence P % Bu
u U u 0%
—_— = ——— 2
o~ or " Bzor 128)
Replacing u, using (28) in (1) gives a Lagrangian form
ot Oudz
i i 29
or  dz ot (u) =)
Then writing 5
o1} 0% u
= 4= = — 30
T T e Oz (30)
(29) becomes
U —uzt = L(u). (31)

In the next section, we shall need the Lagrangian form (31) of (1) to derive
the second method used in this report. However the local MFE method may
also be obtained using this form of the equation, as follows. From (1) we
have the equation u, = L(u) which may be rewritten in Lagrangian form
U —upt = L(u). In the MFE approximation space, the left hand side of (31)
lies in the space of piecewise linear discontinuous functions, we then in effect

8



carry out a projection of the right hand side £(u) using the basis “uncticas
o1, (3 which gives (21). Then using expansions of the type 13" for both
U (in terms of a;) and X (in terms of s;) we have

. . 1) (1) 2) (2
2 a0 = 3 mudjay = 3w + wPgl? |
J J k

(W)
| ]
—

which can be solved for 4,5 to give (24).

Now returning to the solution of the local MFE method the initial node
positions must be considered. Although the nodes move they must be placed
initially, which will have an important influence on the subsequent solu-
tion. The method chosen here is equidistribution using a weight function

(Us,.) % .where U is the initial data [5). This means that the nodes are dis-
tributed according to

Jo¥ (U, ( /=:+1
== = d 33
e oue (33)
where the s; j = 0,..., N are the node positions. This initially places more

nodes in regions of high curvature and fewer elsewhere.

Another important point to consider, is whether the system is singular.
There are two possible singularities of the system (16), parallelism and coin-
cided nodes (element folding)[6]. Parallelism occurs when mj_1 =M 1, e
when two or more consecutive elements have the same gradlent whence the
M matrix becomes singular. This is dealt with by firstly finding the nodes
at which parallelism occurs: the speed of the problem nodes are then con-
strained to be a weighted average of the node speeds at the ordinarv nodes
bounding this region (see fig. 4). Singularities in the C' matrix, due to coinci-
dent nodes are avoided by choosing timesteps to prevent this ever happening
(7).

For some operators £, such as £(u) = uu, in (1), shocks will form in the
analytic solution. However the solution generated by the MFE method will
overturn, le. naturally become multivalued. In these cases, the location of
the the shock position must be calculated from additional jump conditions.
Here we consider two different methods which calculate this position. Both
involve conservation of area [8]: the first locates the shock directly while the
second involves elimination of a swallowtail in the graph of the integral.



Shock Location: Method A.
If a solution overturns so that it appears as in fig. 5 then, as is well krnown.
the shock position will be at the point z, such that (area A) = {area B'. zee

fig. 6. The shock position «,, may then be calculated directly using the bi-
section method.

Shock Location: Method B.
This method locates the shock position z, by finding the position o the
self-intersection of the graph of the integral of U. (see fig. 7), which uses
the same area equality principle. (N.B. The integral curve is made up of
plecewise quadratic segments but we shall here approximate it by piecewise
linears.) Consider two linear segments of this approximation to the integral
of U,
y=pr+q ._, .
y=pz+q #J

where p;, p;, g, ¢; can readily be calculated. The intersection of the segments
occurs when

34)

y—quy—qi (35)

p; Di
ie. y = UE=LP1 and the shock position is given by deleting the swallowtail
Pi—p;

which occurs in fig. 7, which corresponds to the overturning in fig. 6.

=B "% (36)
Pi — p;

There are two main problems which occur numerically with this method:

1. the gradients of the lines can be very close, in which case the solution
of (36) is ill-conditioned and z may be very large.

2. an inappropriate intersection may be found, ie. crossing of extensions
(see fig. 8.)

However, these two problems can be easily dealt with. If the gradients are
similar, then the intersection will occur outside the region considered for the
problem. Therefore the first problem can easily be resolved. The second
problem, involving Inappropriate intersection of z, can be avoided by a sim-
ple test. If (2 — s;_1)(s; — z) >0 and (z — s;-1)(s; —x) > 0 the intersection

10



is valid. otherwise the invalid position is discarded and the next imtersec:ion
calculated.

Method 1A: Local MFE applied to integrated equation

For conservation laws, which are a special case of (1), we also consider
another method based on the local MFE method. The solution is found by
using the local MFE applied to the equation for the integral of L". First we

transform equation (1) into an equation for the integral of u by the following
argument.

ur+ f- =0

= [§(u + 28z = 0

= 2 [F(ue + 28ydz = 0

= 2 [Fudz + [§ ULz = o
= & + (f(u(=)) - f(u(0))) =0

= ‘Z—‘t‘ + f(as) = const
where a = [ udz.
Once the equation

ay + f(az) = const (37)

is obtained. we find the solution for a by using the local MFE method on this
equation. \Vhen the MFE solution has been found it is then transformed back
into the original variables using u = a,. N.B. The difference between this and
the previous method in this section, is that we are here applying the local
MFE method to the variable a rather than u, ie. a = ¥ o (z, s(t))a;(¢t). This
gives a piecewise constant solution since a is calculated using piecewise linear
approximations. However, for the presentation of the results a piecewise

linear solution will be plotted using the following numerical approximations.
For each element k we calculate and plot

T, = Lo
+3 2 (38)
Uy g = S
J+2 Sj41—4)

11



The results are therefore plotted using different nodes than in the caiculatica

Lavads

A plecewise linear solution is plotted so as to be seen in comparison with -ze
solution using the other two methods.

12



3 Method 2 : VM Method

Another approach to these problems is also based on MFE anc uses --e
Lagrangian form (31) of (1). For this method we rirst define & Legencre
Transformation between u{z) and v(m) by [9)

m=
+39)
p= o
for which
u—mz+v=0 (40)

Note that a straight line in u,z space is associated with a constant v.m
values and vice versa. This defines the Legendre transform used. where z.v
are dual Legendre functions.

From (40) we have
u—rmr—mz+0=0 (41)

which, substituted into (31) gives
-V 4+vam+ L(mz —v) =0 (42)

where v, = x. Let M,V be the piecewise constant approximations of m.u.
The aim is to project £(u) element by element into the same piecewise linear
space as before, this time spanned by {1,z}. This is done since, whereas in
X,U space X.X,U,U are plecewise linear and U, is piecewise constant. in
M,V space M. \[. V.V are piecewise constant and V,, is piecewise linear. So
following the same ideas as in of the local method, we now obtain a different
set of ODE’s.

First project £(u) into the space spanned by {1, z} so that £(u) = Az+B.
We calculate 4 and B by finding the best L, fit of £(u) by the straight line
Az + B, ie.

min4 gl| Az + B — L(u)]] 2. (43)

Now assuming that A, B have been found for each element in the finite
dimensional V, M space (42) becomes

—V+V,M+AV, +B=0 (44)

13



where V;, = Y. Comparing the coefficient of V,,, we obtain the ecuatiors

M=—4 .
V _ B 10)

These equations may be solved using an ODE solver such as Euler or Crank-
Nicolson. A and V are then calculated at each timestep, then transformed
back into the original variables U/, X. The method essentially reverses the
two steps of the time integration and of projection.

We now review the second method, involving transformation to dual space
before solving.

14



4 Description of problems

We now consider three example problems. for which we can test the methods.
The problems considered are the inviscid Burgers' equation, the Buckley-
Leverett equation, and the linear heat diffusion problem, all in one aimension.
Although these problems may all be solved using other methods each provides
some interesting feature for the methods considered here. Solutions to both
the Burgers' equation and the Buckley-Leverett equation overturn unless
we impose jump conditions, so that we can obtain the overturned solution
and then find the shock position numerically (shock methods A and B of
section 2). For the heat equation there is no overturning so it would seem
less interesting; however, knowing the exact solution in this case. we can
compare this with the numerical solutions. It also allows us to demonstrate
that we can solve a second order equation using this method.

For Burgers' equation and the Buckley-Leverett equation a third method
1s also considered. This method is based on solving an integral form of
each equation by the first method and allows a direct approach to the shock
positioning algorithm.

We shall first consider the different methods for Burgers’ equation.

Problem 1 : Inviscid Burgers’ Equation

The problem considered here is

uFuu, =0 0<2<1 (16)

with initial conditions
u=tanh(5-10z) 0<z<1
and Dirichlet boundary conditions given by the initial data.

Local MFE

This is the local MFE method where two systems of linear equations are
solved.

Cywy = by (47)
and

IWJ'}.’J' =Wwj.

15



We have already calculated C to be

Si — 8 -1 ]_ 2
“r="5 (2 | ) e
and by is given by
< UUI,¢£1) > by
b, = (2) =1, ) ] 49)
<UU; ¢ > 2
From (49) b, becomes
s 1 ’ _
= [ St

Using integration by parts,we obtain

2 3y 2
b /’ 2 51)

2 .5_-','——.5_];_1 =1 2

The remaining integral may be calculated exactly or by Simpson’s rule. (The
projection is not actually needed here since UU, is already piecewise linear
but this stage is included in order to calculate wy, wp easily.) by is found
using a similar method, hence the system of 2 X 2 matrices C,w, = b, can
be solved. Once wy has been found for each element k, the second system
M;y; = w; can then be obtained. This then allows us to update the solution
of y; at the new time-level using Euler time-stepping.

Local MFE applied to integrated equation.
This is the same method as we have described in section 2. However in

<

this case Burgers’ equation (46) has been written in the form (37)

at + f(a,) = const (52)
where f(u) = “72, a = [y udr and applying the boundary condition gives
const = % We again have to solve the system Cyw; = b, where

< flag) =1 (.1) S by )
b = 21 ¥k = . -:)3
' <<f(ax)—%,¢(2)—k> by (53)

16



To calculate b; we need to evaluate the integral

b = /SJ (flaz) — %)qﬁ;l_)%dz.

1=1

[
H—
—

However, since a is piecewise linear, hence a, is plecewise constant

. tzen
f(az) is also piecewise constant, therefore

L, [
b= fle)) = 5) [ o de

hence

bl = (f(ax) - %)(sj . S;i—l)
2

The resulting equations are then solved as in the previous method.

=bg.

VM Method
In this method the initial data in a;,s; space is transformed into v,y
space using the equations (39)

Qy—Ay—1
mi. = put SRS A2
FT e . !

o
I
—
oy
I
Ry
I
|
—
ot
(1}
Ny

Up = MgS; — a;

From (31) and (46) we obtain the equation
— U+ zm —m(mz —v) = 0. (36)

Note that Burgers’ equation does not follow the general method as stated.
since we do not need to project M(MX — V) into a piecewise linear space

because it is already of the correct form. We can compare the coeflicients of
of 1, X directly to give the two equations

M= —M? .
V=-MV (57)

These can be solved exactly, since choosing t,ve as initial conditions we
obtain

M = =L

and V =

-t t— o

(58)

17



This means that M ="' and V~! are linear in t, so using Euler’s rule to integrate
for M=', V=1 will give exact results.

The final update of the solution is obtained by using Euler’s rule. then
the original solution in U, X space is found by transforming back from 1" )/,

Problem 2: Buckley-Leverett Equation.

The second problem we considered is the Buckley-Leverett equation given
by

u?
= 0< <2 (59
ut+(u2+§(l—u)2)r <r< (39)

with initial conditions

1
<zr<?
1+ 10z 0sz<

and Dirichlet boundary conditions given by initial data.

Local MFE

Using the first method, we again solve the system Cyw, = b, for each
element k. C, and wy are as before, so here we only need to calculate

u? (1)
by = < u"‘+2(1—u)“¢k S - ( b )

u? 1(2) b
e v i

Hence

%y u2
by = T E— A
% js,_. (uz + (1 - u)z)xqﬁJ‘i !

2
35 u2 2
b, — / ’ () d.’L‘,
£ Iy—i u2 + %(l - u)2 r¢]_%
which are calculated using either Simpson’s rule or Gaussian quadrature.

The second svstem M;y; = w; is then solved for each node before updating
y using forward Euler time-stepping.

and similarly

18



Local MFE applied to integrated equation
Rewriting the Buckley-Leverett Equation (59) in the integral form 37)
with f(u) = m and the constant=1, the equation then becomes
ai+ flaz) =1 50)

a=/zuda:.
0

First solving the system C,w) = by for each element % where

o) (s (fla) =1 (1
R 5 1)

the system Af;y; = w; is then solved and y is updated.

where

VM Method
Writing (59) in Lagrangian form gives

L — 1, N 0 61
u_uzz+(u2+%(1—u)2>z— ( )
This is then projected onto the basis {1,z} so we get

U—ug+Az+B =0 (62)

where A, B are found from

mip || Az + B = £l 63)

= / (Az+b— f.)1dz =0
851

and | (Az+b— f,)zdz = 0.

851

These give
S, + ol = el - [ fda
S;5—1

19



and A
S0, + Blzly_ = [f]»

9 Sy=1 Sy—1 Sy—1"'

The integrals can be obtained using Gaussian quadrature or Simpson's r:le,
and (63) leads to a 2 x 2 system to solve for A.B. Now using (3) in 1./
space and collecting coefficients of 1 and Vi gives

M=—4 _
. , 54
V=25 )

These equations may then be solved using either forward Euler or Crank-
Nicolson time-stepping.

Problem 3: Linear Heat Equation

The third problem considered is the linear heat equation.
Ut = Uy 169)
where u = u(z,t), with initial data
u=sin*(rz) 0<z<1

and zero Neumann boundary conditions. For this problem we are only con-
sidering the two methods, local MFE and the VM method.

Local MFE
For the local MFE method the system Cyw; = by is solved first. This is
the system
Sj - S‘r—l 2 1 wn j:;_]_ ¢,_§1_);. U’xmdx
9 ) = " (2)° . (66)
6 1 2 Wo L:_l q)j_éuma’x

Using integration by parts

59 5. %G 80'(1)
L 6 teds = (g0 usli, — [ e d

1 p '
=1 ‘7—2 951 (9:1,‘

[“];j—l

3
(1) B —
/s Pimgllads = —usl,,, + (85— 8j-1)

1
i 772

20



The last term is an approximation to u, over the inteval [s;_1,s. . so

31
1
/ oE._)Lumd:v = —Ugls,_, + Ug]
s 42

. i s5-1,85]°

Now since u, is the gradient (see fig. 9). and there are no values of u. at
the nodes. We will take Ugls,_, to be the average of the values on each side.
Using the notation that u, = my in element k, the right hand side becomes

10 myg —myy
2\ Mepqr —my /-

This gives the system

(s;j —sj-1) [ 2 1 wy \ _ L me—myy o
Ay Mt =3 ¥ == (67)
6 1 2 Wo 2\ Mpyp — My

which is solved for wy, w, for each element k. Hence. as long as S; F S,_1,

1

w = —————
' (85 — 8j-1)

(—2mk—1 + 3mk at mk+1) (68)

1
(85 = 85-1)
We now need to solve the system M;y; = w; for ¥, where A/, and W; are
known. y is updated using forward Euler time-stepping.

wy = (My—1 — 3mg + miyy). (69)

VM Method

For the second method. we write equation (65) in Lagrangian form.
U — UL = Ugy (70)

then it can be projected into the space spanned by either {1,z} or {61, 6(2)}
hence (70) becomes

uU—uz =Az+ B (71)
or

U — upd = w1 + wye?, (72)

21



We used the local basis functions as this seemed to give more stable numerical
results. This means that we have to find

minwl'mll wlo(l) - w'Z(P(Q) = Ugzy; 2- 73)

Solving this gives the same system as we obtained for the local method so.

that w;,w, are the same as in equations (68,69). Now rewriting {72) in MV
notation we obtain the equation

=0+ Ui = w191 4wy (74)
which we can rewrite as
- v+ v,m = Av,, + B (73)
where
A= 0 + W (76)
Sj = SJ.‘_I
and
B =3 Wi (77)
S5 — Si-1
Hence comparing the coefficients of 1 and vm We get the equations
-V=28B (78)
M= A (79)
So for equation (79) we get
- 3Mi_; — 6N 3M,
i, = 3M_ — 6 + k+1 (80)

(85— s;-1)2
This may then be solved using either an explicit or an implicit method.
Writing this equation so that is solved using Kuler time- stepping, gives
JWE-H - IV[;:" _ 3Mk_1 — 6M; + 311/Ik+1
At - (85 — 8j-1)?

(81)

V is solved similarly. The problem given has Neumann boundary conditions
so this gives My = —M; and My42 = —Mpyq for the end elements. These
are applied to the equations above at the end equations.

2



5 Results and Discussion

[n this section we will consider the results of both methods applied to :ne
problems described in the previous section. Note that method 1 {local MFE)
is applied twice to problems | and 2. It is first applied to the original prooiem
and then applied to the same problem this time written in an integrated form.
For problems 1 and 2 we also consider the two shock methods which are only
applied when the equation is being solved using Method 1. Since the equation
no longer being solved in conserved variables. The results are given In ngs.
10-21.

Comparing figs. (10.12),(15,17) and figs. (20,21) respectively we can see
little difference between the two sets of results. For problems 1 and 2 it is not
possible to obtain a closed form solution, this means that we cannot easily
calculate the error for the the two methods. However problem 3. the heat
equation can be solved analytically so that we can calculate the L, error.
The L, error between the exact and approximate solutions is given below

for both methods. The timestep is 0.0001 for both methods and the error is
printed evey 100 time-steps.

The equamon Ut = Ugzy With Neumann boundary conditions and initial
data u = sin*(7z) has solution

1
u(z,t) = ;(1 — it cos(2mz))

<

By = \//Ol(U — u)de

where U is the approximate solution in each element.

hence the L, error is

23



" Number or timesteps | Method 1 | Method 2
0 0.147x1073 [ 0.197x 10"
100 0.261x 1072 | 0.255x10~°
200 0.120x1073 | 0.118%10~*
300 0.547x10™* | 0.539x 10~*
100 0.256x107* ! 0.252x 10~
500 0.127x107* | 0.124x 10~ |
600 0.676x10~° | 0.663x 105 |
700 0.418x10~° | 0.409x 10-5 |
300 0.306x10~% | 0.299% 105 |

L, errors for the heat equation.

From these results we can see that the L, errors for the two methods are
very similar. This implies that int terms of accuracy there is little to choose
between the two methods.

The initial results for all the problems are calculated using 21 nodes. The
timesteps used for each problem are the same for both methods. WWe will in-
stead compare the cpu time (given in seconds ) for each of the methods. Ve
first compare the cpu time for the two methods, and in each case for similar
problems the cpu times are approximately the same. We now consider the

cpu time for the two shock location methods.

Problem 1 Problem 2

t=0.01 | t=0.0001 | t=0.01 | t=0.001
Method A | 1.60 15.60 0.43 3.10
Method B | 0.24 3.90 0.24 | 1.10

Cpu time tor the shock location methods.

The results and cpu timings show that for a given timestep there is little
to choose between the two methods, although between the shock recovery

procedures, Method A clearly has the advantage.
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Another consideration apart form accuracy and cost is the robustness of
the method. To compare the robustness of the two methods (1 and 2). both
the timestep and the number of nodes in the calculations have been varied.
The results are given (x-method stable,e-method unstable).

Burgers Equation

timestep number of nodes
Method 1 \ Method 1A || Method 2
21 (40 [ 802140 (80| 214080
0.8 * |x Ix |l* |*x | * [|* | * |=
0.1 * | *x | x || % | * | =% * | * | *
0.01 * lx x|l x | * | =% * | * | o

Buckley-Leverett Equation

timestep number of nodes
Method 1 || Method 1A || Method 2

21 140 |80 ([21 |40 (80 [ 2140180
0.1 * | x |k ||Hx | x | * o (o | o
0.01 * | x [ x ||%x | x | * o |o | o
0.001 * [ *x | % |[% |x [ ([« [o |o

Heat Equation

timestep number of nodes
Method 1 | Method 2
21 (40 | 80 || 21 | 40 | 80
0.001 o |o | o ° o | o
0.0001 * |o o [ |o |o
0.00001 * | x % ||x |x | %
0.000001 || * |% [+ [ %= [%« [%

The results on stability show that for the problems discussed here there
is little to choose between the two methods. However for problem 2. there is
a clear difference between the sets of results. This could imply that method

25



2 Is more problem dependent than method 1. but we would have to cozsider
more problems before reaching any conclusion.

From the results given it is clear that we have not found any reai ad-
vantage to either method. The main advantages we have found are probiem
dependent in the sense that it may be easier to implement one of the methods
than the other for a given set of equations.
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