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Abstract

We examine a procedure for achieving partial pole placement via
output feedback by combining state feedback and least squares techniques

and analyse the errors incurred.
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1. Introduction

Automatic control of time continuous systems 1is an important
criterion in many practical areas. The stability of such systems is
linked, as will be shown, to the eigenvalues of their state matrices.
These matrices, if wunsatisfactory from this point of view, may be
changed or their eigenvalues reassigned so that they adopt more suitable
values. This process is known as pole placement and may be attained by
means of a feedback which uses knowledge of the states of, or outputs
from, the system to manipulate the inputs in order to change its future
performance.

Pole placement by output feedback is often a complex control
problem, limited by matrix dimensional conditions and yet is of more
practical wuse than state feedback, which will assign the same
characteristics with less constraints but requires a great deal more
information to put into effect. However, there exists a link between
the equation describing the state matrix of the system obtained by means
of state feedback and that obtained by output feedback so that, given a
computed state feedback state matrix, we may employ a least squares
method to compute the best approximation to the corresponding output
feedback matrix.

In section 2 we give the background to both aspects of this problem
and carry out an error analysis in section 3. Section 4 contains some

numerical examples, while conclusions are given in section 5.



2. Background to the problem

In the first part of this section we explore the motivation for
choosing specific eigenvalues of the system state matrix for

reassignment.

2.1 Motivation
A general time-continuous linear system can be described by the

differential problem

x = Ax, x(0) = x,

where A 1is a constant n X n matrix, known as the state matrix, which

has the solution
x(t) = exp(At)go . (2.1)

Expanding the exponential term and taking norms, we have

a "k

lexp(At)l < ) ) t' rexp(Re(n ) t)IIZ, (2.2)
k=1 1=1

where Re(kk) denotes the real part of the eigenvalues of A ,
q is the number of distinct eigenvalues,
o is the order of the largest Jordan block associated with Ak and
Zkl are constant matrices determined entirely by A .

From (2.2), llexp(At)ll — O as t — o, provided that
Re(Ak) <0 Vk since (2.2) is a sum of finite terms which each tend to

zero as t — ®© | Since, from (2.1),
x(t)ll < Hexp(At)HHEOH

the system is asymptotically stable.



We see, then, that for stability it 1is sufficient that the
eigenvalues of the system state matrix have negative real parts and we
aim to design a feedback which is able to alter the state matrix so that
this is the case. This may be done in two ways, depending on the

information available, and we describe them below.

2.2 Introduction to State Feedback

In this section, we give a brief outline of the characteristics of
state feedback and the basic method for achieving stable state feedback.
For greater detail, see Kautsky et al (1984).

We consider the time—invariant linear multivariable system whose

state equation is given by:
x = Ax + Bu (2.3)

where x is an n x 1 state vector

1=

isan mx 1 input vector
and A,B are matrices of appropriate dimensions, and B 1is of full

rank.

We assume that we have full knowledge of the states of the system
at any time so that we may employ a feedback matrix F which alters the
system inputs by acting on the whole state vector. That is, the ’'new’

input to the system becomes:

l;l = F}_( + \_f (2.4)

where v is an m x 1 input vector unaffected by feedback.



Substituting (2.4) into (2.3) gives a new state matrix equation
x = (A+BF)x + Bv (2.5)

and we seek to choose F so that A + BF has eigenvalues with negative
real parts. More specifically, we seek an F which will assign
predetermined eigenvalues to the system. In other words, state

feedback requires us to find an F and an X s.t.

(A+BF)X = XA for some given A = diag(Ai) (2.6)

! . . . . n
where X 1is a non-singular matrix having the eigenvectors X; € R,

i=1,...,n of A+ BF , corresponding to each Ai ., as its columns,
and the eigenvalues Ai are self-conjugate complex.

There are many choices of eigenvector for each eigenvalue
corresponding to different choices of F and we may select each so that
the resulting system has certain properties.

From (2.6) we have that
BF = XAX = - A . (2.7)
Taking the QR decomposition of B gives
B = UZ where U is orthogonal

and partitioning in such a way that ZB consists of a non-singular,
upper triangular block and a zero block corresponding to the partitioned

blocks of U , we obtain

N



Then, pre-multiplying (2.7) by UT gives:

ZF = UL(XAX T - A)
(2.8)

and 0 = UI(XAX_I - A)
The first of these equations gives us a solution matrix F ; the

second gives the condition to be satisfied for such an F to exist,

i.e. a solution exists iff

U (AN - A) = 0
i.e. iff U{(XA -AX) = 0. (2.9)
In other words, we require each column X5 of X , corresponding
to each eigenvalue Ai , to belong to the null space
¢ = NU(A - A1)}
i 1 i '
To form the null space we take the QR decomposition of
[U{(A B ?\iI)]T for each i and partition,
T T - Ry
i.e. [Ul(A - A1)] = [S,, S.] 2 (2.10)
i i i 0
Then Si is an orthonormal basis for 91 since
T 2 Ry Ry
Si[Si, Si] = [0, I] = 0
0 0
and
T-..T T T T
Si[Ul(A - AiI)] = [UI(A - AiI)Si] .
So, for each i , we choose a vector X5 from Si to form
X = [51, 52""’§n] such that X lends the required characteristics to

the system.



We may now employ the computed X in (2.8) to find the feedback
matrix

F o= 20 (XX - 4) . (2.11)

2.3 Introduction to output feedback

Output feedback may be described in a similar way to state feedback

by means of the equations (2.3)

where A, B, x, u are as definition in 82.2 and y is a p x 1 output
vector

and C is a p xn matrix of full rank.

In this instance, information is not available for all states of
the system. Here we may only observe the outputs of the system. For
example, we may think of a chemical reaction which as it occurs has many
states, e.g. quantities of each compound as they are formed,
temperature, volumes of gases, liquids and solids etc. Perhaps only
some of these may be measurable and, moreover, may only be measured
indirectly. In this way system outputs are related less
comprehensively to system states — they are able to give limited
information about the states and are not directly related to them. Any
feedback which is desired to alter the state matrix may depend only on
output information to adjust system input so that the new input is given

by
u = Fy+v (2.13)

where u and v are m x 1 input vectors.



- 10 -

Substituting (2.12) and (2.13) into (2.3) gives
x = (A+ BF,C)x + By . (2.14)

Again, for stability, we desire the eigenvalues of M = A + BFOC
to have negative real parts and we seek an FO to ensure this.

Output feedback introduces dimensional requirements unlike state
feedback which requires only that there are at least as many states as
inputs. Kimura (1975) has shown it is sufficient that m + p > n for
arbitrary assignment. We shall continue by showing how, in certain

circumstances, we may soften this restriction.

2.4 Partial pole placement

We may find that we need not change all of the eigenvalues of A ,
a process which can prove to be expensive. So we construct an output
feedback matrix FO which changes those eigenvalues which are

unsuitable and leaves the others in their original positions.

Taking the Schur decomposition of AT, we have:

AT = orot (2.15)

where Q 1is orthogonal and R is a (block) upper triangular matrix
which has the eigenvalues of A,ul,...,un , along its diagonal.

Pre- and post-multiplying M by QT and Q respectively gives

Q'(A + BF,0)Q = Q'AQ + Q'BF 0 . (2.16)
Suppose that we wish to assign only k new eigenvalues, Al,...,kk ,
and leave the remaining n-k, Hpppe oo oMy o in their original

positions. We reorder the rows and columns of Q and R so that the
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eigenvalues to be reassigned lie in the first k positions along the
diagonal of R , those to be left along the final n - k positions of
the diagonal and so that the upper triangular structure of R is

retained, and we partition the decomposition thus:

T
R R Q
o 24

0 R3 Q2
so that R1 has the k eigenvalues to be overwritten along its
diagonal and R3 contains the n - k eigenvalues to be left.
Then,
o q[dl
A = [Ql’ Q2] RT RT QT (2.17)
2 3 2
Define Bi = Q¥B i =1,2 so that B1 is k x m, B2 is (n-k)xm
and C1 = OQi C1 is p x k, C2 is px(n-k).(2.18)
T R, O B, ..
Then Q (A + BFOC)Q = RT RT + E FO[ Cl' C2 ]
2 3 2
T el L N Lot
Ry * BiFo© 1Fo%
= m T o~ o~ (2.19)
Ry *+ BoFpCy Ry *+ BoFGy
We aim to assign eigenvalues to R¥ + BIFOCI as for the state
feedback. Here the dimensional condition reduces to k > m since
there are now k states in the partial system.
So we assign Kk new eigenvalues to R? + BlFl and solve the
equation F1 = FOC1 with the constraint that FOC2 =0, so that

(2.19) reduces to
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. R| + BF, 0
Q (A + BFC)Q = ~ (2.20)
0 RT + B F RT
2 21 3
and the system then has eigenvalues Al""’xk which are assigned to
1 e 24 ] . . <
R1 + BlFl by F1 and Hpppe oo oMy which remain in their original
positions.

Note that state feedback requires there to be more than, or an equal
number of states than 1inputs, so that, in this partial case, the

condition is imposed that k > m .

2.5 Least squares method

Assume that we have assigned the eigenvalues Ai’ i=1,...,k to
the matrix R{ + BlFl and have computed F1 : Then we wish to solve
F1 = FOC1 subject to FOC2 = 0, (2.21)

We may cast this problem in the least squares form:

min ”ETFT = ET” subject to ETFT = 0 (2.22)
T 10 1 20
FO

where |ll*ll is any Holder norm.

i.e. we minimise the residual of the solution to (2.21).
The most common method for solution is the direct QR method for the
least squares problem with equality constraints (LSE problems}. In the

following section we examine this method and comment on its suitability.

2.5.1 Direct method for LSE

We seek to solve the problem (2.22). First, to ensure

satisfaction of the constraint, we take the QR decomposition of C2 :
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O A

] = [51, 62”1;] = 51§. (2.23)

Here we require that p > n-k or there would be more constraints than
variables and we would not, in general, be able to satisfy all of the

constraints, i.e. we would have an over-determined set of equations in

~“T.T
C2FO =0 .
Define
Y
QFr -y = [ 1] (2.24)
0 Y
2
Y 4 lr  [RGR
so that = F. = from (2.23) .
Y2 aT 0 6TFT
2 20
. ~Tx i . .
Then, since C2Q2 =0 and Q2 is the full orthonormal basis for the
null space of ET , the constraint is satisfied iff
T o
Fo = Q¥
Hence,
~T.T =T ~T= =T
l[ClFO = Fln = HC1Q2Y2 = Fl”
— +,\T +
Therefore, Y2 = [ Cin ] F1 where denotes the Moore-Penrose
pseudo—inverse
T ~NTY L+T
and FO = Q2[C1Q2] F1 . (2.25)
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Note that this method yields three dimensional requirements as a

result of QR decompositions and the ensuing partitioning, that
n2k, n2p and p 2 n-k . The first two conditions are trivial and
should be satisfied for any system. The finmal condition, however,

gives some cause for concern, and an alternative method is sought for
the cases for which it is not satisfied. We explore such a method in

the following section.

2.5.2 VWeighted least squares method

Here we alter the problem slightly and relax the constraint by

bringing it into the minimisation so that we have

AP
min ~ FO 4 . (2.26)
Pl ) 9
0

We can place more emphasis on the constraint by introducing a weighting

parameter (Golub and van Loan (1986)), ¢ , which in theory may be

large, but in practice is restricted in size by the potential rounding

errors it may introduce. Barlow (1986) has shown that an optimal value
—i4

of ¢ is p , where p 1is the machine unit round-off.

We operate then, on the system

¢ 1o [F
min ~T FO = (2.27)
T ¢ C 0
F 2
0
by using the QR technique on the matrix
E¥ [v N R
= Q.Q]
¢ Eg 1 2 0
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so that (2.27) which is equivalent to

~T ~T
~r (| €1 | 1| Fi
min || Q ~T FO - Q
FT ¢ C2 0
0
R A1 [F
= min FT - 1 1
FT 0 @ a; 0
0
- i ~T
i, @ 5]
= min FO = | A7 ~T (2.28)
ET 0 Q2 F1
0 0
~_ ~T
which is minimised when Fg =R 1 6¥ [ F1 ]
0

~T
with residual ” 6; [ Fl ] ” .
0

Again, this method yields dimensional conditions, but in this case

they are limited to the previous trivial conditions, i.e. n 2 k and

np.

The disadvantage of this method is that neither the original
minimisation nor the constraint may be fully satisfied. Relaxing the
constraint in this way wultimately leads to some change in the
eigenvalues which had been designated as fixed, particularly because the

structure (2.21) is not achieved; neither does it improve the solution

of min||C FT - FT
1°0 1
FT

0
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3. Error analysis

Having described two least squares methods which, in theory, should

cover all cases for the purposes of partial pole placement provided that

k >m , we examine in this section the errors incurred by these methods

and the effects that any such errors might have on the eigenvalues of

the resulting output feedback matrix.

3.1 Eigenvalue perturbations

Let the eigenvalues of M= R? + B F be A

11 1’

"Ak , where

X MX = diag(ki) , i=1,...,k, and suppose that M is approximated
by M= R¥ + BlFOCI . Then the error matrix, E , 1is given by
E = M-M
= Bl(Fl B FOCI) (3.1)
Let the eigenvalues of M Dbe Bryves ook o then by the Bauer-Fike

theorem (1960), a weak bound is given by

min |A-u| < k(X) IEN
AEA(M)

where k(X) 1is the condition number of X .

The first of the two methods employed in the previous section may

be analysed in a straightforward manner and we label the error obtained

from its residual E_ . The error from the second we denote by E2 .

1

Both share an interesting characteristic which can be used directly to

affect the choices of X in (2.9) to form the state feedback matrix.
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3.2 The LSE method

In using this method we know that the constraint is enforced and

~

that any error reflects only how well Focl approximates F1 . We may

consider then the residual:

~T.T T ~T T, 5T =T
Cifo = F1 = OB F - F)
T ST\t T
= (6%(C1%) - DF
= PET say,
1
so that the actual residual FOEI - F1 is given by FlPT and the error
E1 is given by
E, = BFPL (3.2)
1 11 ’ )

3.3 The LS method

From section 2.5.2 we know that

E N .
Lo
¢C2

at the optimum value of F

i.e. the residual is 255[ (3-3)

o 3
| SE——

However, (3.3) represents the error for the whole problem and we

wish to separate it into the residual of E¥Fg - F¥ and that of the



constraint.
Then

and

Here, M
and ﬁ
so that E
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By partitioning Qzag so that

~ o~ ;{ Q
Q,Q = where Q. is k xm .
5Q Q 3
0 4
T T
o 1 = Q
~T T 1
GFy = 3%
T ~ o
[ R] *BF 0
= | 1 ~=~ T
RY + BJF, Ry
R! + B.F.C B.F.C
B [ 1 * BiFoCy 1FoC ]
= | T s~ T o~
Ry + BoFoCy Ry + BoFCy
Culn [BI(FI—FOCI)—BIFOC2]
By(F, - FoCy) - BoF Cy

5 AT il =

_ [_BIQB - 3 81%
- o T i, &
T B3 - By

(3.4)

(3.5)
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4. Numerical results

In this section we examine three numerical examples. The first
two employ the standard QR method for LSE and the third, due to the
dimensions of the matrices, uses the weighted QR method for LS
problems as described in section 2.5.2. All three examples have

controllable and observable (Barnett (1975)) systems (A,B,C) and

subsystems (Rl' Bl’ Cl) . All three examples were worked on a Nord
computer,
Example 4.1
[ 5.1017 - 0.0808 - 0.4009 - 2.4388 |
0.1918 1.4069 1.1396 - 1.6548
A =
2.3891 0.2025 1.5873 - 1.9924
| 1.0183 - 0.6796 - 0.2174 1.9041 |
0 0 ]
1 0 0 0
1 0
B = C = 0 0] 1 0
0] 0]
0 0 0 1
| O 1
Here n = 4 m=2, p=3
A has eigenvalues =1, 2, 3, 4 and we attempt to reassign
p=2, 3,4 to the new values A = -1, -2, -3 and leave the remaining

eigenvalue as p =1

~

State feedback produces the state feedback matrix F , which

assigns eigenvalues -1, -2, -3 to the partial system and is given by
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F =

“ [ 28.9274 - 14.6695 - 16.3431 ]
1

18.6220 - 2.5108 - 7.9058

This in turn yields the output feedback matrix FO ,  where

F =

[ 29.3759 7.6350 - 18.7981 ]
0

16.1464 6.5981 - 10.3340

and assigns the eigenvalues -2.8984, -0.9001, 2.4645 and 1.000 to

the system A + BFOC .

The solution matrix FO gives the residual

~

IIFOC1 B F1H = 7.0021

and yields the unscaled Bauer-Fike upper bound:

min|A - u| < 78.381

which validates, albeit pessimistically, the difference between the best

matching expected and computed eigenvalues.

Example 4.2
Here
1.3800 - 0.2077 6.7150 - 5.6760 |
- 0.5814 - 4.2900 0.0000 0.6750
b 1.0670 4.2730 - 6.6540 5.8930
| — 0.0048 4.2730 1.3430 - 2.1040 |
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[ 0.0000 0.0000 |
1 0 0 0
5.6790 0.0000
B = , C = 0 1 0 0
1.1360 - 3.1460
0 0 1 0
| 1.1360 0.0000 |

so that n=4, m=2, p=3.

In this case, the eigenvalues of A are given by p = 1.9910, 0.0635,
-8.6659 and -5.0566 and we aim to reassign the first three of these
as -0.2, -0.5 and -8.6659 and leave pu = -5.0566 1in its original
position. Again, the state feedback procedure successfully yields a

~

feedback matrix F1 , which assigns the required eigenvalues to the

partial system, where

s [ 0.6551 - 0.2735 0.1049 ]

0.7971 - 1.2260 0.0048

Employing this matrix in the LSE problem yields:

FO =

0.2776 0.2152 0.2651
1.1257 0.4605 0.6467

The eigenvalues of A + BFOC are 0.8157, -0.1269, -7.8117 and
-5.0566 .
The residual in solving the minimisation is given by

~

IIFOC1 = Fl" 0.7511 ,

so that the Bauer-Fike bound is:

min|\ - p| € 2.341 .
A
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It should be noted that the weighted method gave almost identical
results to those obtained by the LSE method when applied to Examples 4.1

and 4.2.

Example 4.3

In this final example we choose the matrices so that p < n-k .

- 20.2060 4.5847 12.7400 1.4426 - 0.8052 ]
- 62.9920 15.9710 34.9860 4.1658 - 0.9161
A = - 13.9080 2.7680 10.3330 0.6951 0.9239
- 33.2010 5.9492 18.3740 5.5345 1.5275
- 37.5820 6.9960 21.4760 3.2463 3.3680 |
1 0 |
0 0
1 0 0 0 1
B = 0 1|, C =
0 1 0 1 0
1 1
1 0 |

Here n =5, m=2, p=2 and the eigenvalues of A are pu=1, 2,
3, 4, 5. State feedback is employed which reassigns the eigenvalues

1,2 and 5 as -1, -2 and -3 with the feedback matrix

- 36.319 5.5806 - 0.5771

12
I

- 36.159 6.3971 - 1.8434

The resulting least squares solution, wusing weighting parameter

¢ = 104 , yields an output feedback matrix
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- 2.0865 1.8407

- 2.0169 1.7776

which leaves all of the original eigenvalues in their original
positions.

The residual for the problem are given by:

~

IF.C. — F. Il =51.973 and "FOEZH =1.3x 10

8
071 1 '
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5. Conclusions

Perhaps the strongest point to emerge from this approach to output
feedback is that a small residual in the least squares solution of the
equations relating state and output feedback does not guarantee good
approximations to the eigenvalues required. Clearly though, reducing
the residual can only have beneficial effects and we should consider
ways of improving it. We note that both errors resulting from the
least squares approach are directly related to the state feedback matrix

Fl which assigns eigenvalues Ai, i=1,...k, to the partial system

R¥ + BlFl and that only the construction of F1 may affect the errors

E1 and E2 .

~

Kautsky et al have shown that the state feedback matrix wmay be

written as:

1 T

F, = BI(XAX_ - R)) (5.1)

1

where A 1is a diagonal matrix having the eigenvalues of

R¥ along its diagonal

and X 1is the matrix of eigenvectors corresponding to A .

Taking the norms of (5.1), we see that

1

IF 1< BT HCIKNNK Hmaxc [A; |+ HR; 1)

1

1]

HEIH(K(X)m?x|Ai| + IR (5.2)

Since we only have control over the choices of Xso i=1,....k,
which make up the columns of X, (5.2) suggests that we may minimise an
upper bound on HEIH by minimising the condition number of X . The
state feedback procedure employed by Kautsky et al (1984) does, in fact,

already
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incorporate a method for selecting an X which minimises its condition
number as this also minimises the sensitivity of the eigenvalues
resulting from state feedback.

We might conclude then that this particular approach to output
feedback is not the most reliable of methods, although it should be
noted that by using the direct least squares method we can at least
bypass the dimensional restrictions imposed by other methods. However,
this also means that often no eigenvalues are assigned exactly so that
the advantages of partial pole placement no longer exist.

Future work is expected to include an investigation into the
relationship between the two errors E1 and E2, together with more
extensive numerical testing and to incorporate some of the early theory

developed.
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