AN IMPLICIT REGRIDDING ALGORITHM

WITH AN UNDERLYING FIXED GRID, FOR

FRONT, SHOCK OR BOUNDARY TRACKING.

By D. E. Heath

Numerical Analysis Report 16 /87

University of Reading
Department of Mathematics
P 0 BOX 220

READING RG6E 2AX

The work in this report forms part of the research program

of the Institute for Computational Fluid Dynamics.

Contents

Abstract

Introduction

Front tracking

2.1 MFE with constrained nodal velocities
2.2 Evaluation of inner products
2.3 Nodal velocities

Regridding technigues
3.1 Node Reversal

3.1.1 NR Algorithm
3.2 Node Deletion

3.2.1 ND Algorithm

Application of the NR and ND Algorithms to Test
Problems and Special Procedures

4.1 Application to a Moving Boundary Problem
4,1.1 The Moving Boundary Problem
4.1.2 Estimation of the Boundary Velocity

4.1.3 Initial Nodal Distributions on
F. and M,

4,1.4 Implementation of the NR and ND
Algorithms

4.1.5 An Implicit Version of the NR and
ND Algorithms

4.1.6 Time-Stepping Using the Implicit
Algorithm

4.1.7 Implementation of the Implicit
Algorithms, With Error Measurements

10

12

14

14

17

17

20

20

22

23

23

25

26

27

4.1.8 The Radial Moving Boundary Problem
Propagation of Steep Fronts
4.2.1 Burgers' Equation

4.2.2 Numerical Representation of Front
& Front Speed

4.2.3 Numerical Results for Burgers’
Equation Using Numerical
Newton-Raphson

Shock Problems

4.3.1 NR Shock algorithm

4.3.2 Shock Test Problems

4.3.3 The Buckley-~-Leverett Equation

Conclusions

Acknowledgements

Appendix

References

32

37

37

38

39

43

43

44

47

51

53

54

56

Abstract

In this report we develop two similar numerical algorithms
for the solution of partial differential equations in which it
is important to track a moving boundary, a shock or a steep
front. These methods are based on a combination of a fixed
grid and a local moving grid, each having the property that
they leave the mesh unaltered once the front has passed

through the region.

1. Introduction

In recent years much effort has been put into adaptive mesh
algorithms for partial differential equations whose efficient
solution requires good resolution in particular parts of the
region where important features occur. Certain adaptive mesh
methods, however, used for the numerical solution of moving
boundary problems or hyberbolic problems which develop shocks
have the unfortunate property that the solution region is
intrinsically split into two domains, the domains being
separated by the shock or the moving boundary (e.g. the Moving
Finite Element Method (MFE) (see [1] & [21)) The main
disadvantage with this property is that the nodes are forced
to lie In one of two separated regions, with no nodal transfer
allowed between them. Although some very good results have
been achieved using this technique (see e.g. Moody [31)),
certain requirements have to be met before the method will
work (e.g. the moving boundary or shock must lie in the
solution domain at the start of the problem.).

For certain types of problem the moving boundary does not
form until after a certain time, or if it does exist it is
just inside the solution domain: both of these conditions will
causge problems if attempted to be solved by the above
mentioned techniques. The first case will be impossible to solve
if we consider two regions, as one of the regions will contain
no elements, the second condition (i.e. the boundary is
initial just inside the solution region) could cause problems,

it for example the physical geometry played an lmportant role

at the boundary of the region. For example in oil reservoir
modelling, if we considered the injection of steam from a well
bore into a reservoir, then as well as trying to track the
moving interface between the steam and the oil/water through
the reservoir, it is algso important to have a large number of
elements present Aaround the well bore at all times as vast
changes in pressure occur around this point throughout the
injection and production phases. If two regions were employed,
one either side of the interface, than as the boundary moved
into the reservoir their would be insufficient elements left
around the well bore, in order to represent the solution.

In section 2 of this report we describe the MFE method and
the manner in which the nodal velocities are constrained.
Section 3 develops two numerical methods capable of
transferring nodes from one region to another, for
one-dimensional moving boundary problems. The only moving
nodes present in this method are in the group which we use to
track the boundary. After the interface passes through the
region the nodes return to their initial positions. The main
reason for not allowing all the nodes to move in each region
(as Moody does in [31) is again related to the physical
problem. Since it is intended to use this method for oil
reservolr modelling problems (e.g. steam injection) and since
the rock properties are inhomogeneous, it is desirable to keep
the nodes in set domains (see Fig 1.1).

In section 4 we apply the methods of sections 2 & 3 to some
test problems, firstly to a moving boundary problem, secondly
to the case of tracking a steep front in the solution of the

viscous Burgers' equation, and finally to shock problems

(namely linear advection and inviscid Burgers’) where the
theory of section 3 has to be extended so as to cope with
double valued nodes. Finally we consider the Buckley-Leverett
equation, representing the jump in saturation either as a
shock and or as a steep front. The conclusions about the two

methods are contained in section 5.

Fig 1.1 Diagram showing how rock structure can affect the

grid.

—— 0 £

® =5 00

Shale.

Sandstone.

Limestone.

Flne sand.

2. Front tracking

It is important in many problems (e.g. those involving
moving boundaries) to be able to locate accurately a certain
point in the solution domain, e.g. the position of the
boundary. Numerically, this is best achieved by use of an
adaptive mesh method, which allows nodal positions to vary
during the solution, for example the Moving Finite Element
method (MFE), (see [1]1 [2] & (41). In this kind of method, at

the end of each time step a node may be located at the moving

boundary, the shock etec.

2.1 MFE with constrained nodal velocities

In this section we will show how nodal velocities can be
incorporated into the standard Galerkin equations, where the

speeds of the nodes are specified.

Consider the standard evolutionary equation

us - L(u) =0 (2.1)

where L 1is some spatial differential operator (which may be
non-linear). We seek a semi-discrete approximation v to the
solution u of (2,1) of the form

{=N

v = K Vy &, (2.2)

im0

where v; are coefficients (nodal amplitudes) of the

corresponding nodes

8¢ = s5;(t) , with g =

and &, = o (x,s5(t)) are the standard piecewise
functions, on the grid defined by s:. A typical
(O < i <N) can be seen in fig.2.1.
& (x,s8(t))
q\
1 4 Fig. 2.1
|
|
1
|
|
|
! Ny
| ¥ i s
Sy-1 Si Sy e+ X
Here,
X —- Sy, Si-1 %2 x < s4
S1 — 8Si1-3
oy = Si+31 - X Sy < X £ Sy.1
Sy+1 Si
0 otherwise.
Differentiating (2.1) with respect to time,
i{i=N :
Ve = (\'/,o(‘ + 51[31)
im0
where B8, = B, (x,s(t),v(t)) are piecewise

basis functions
(11,
B, =

“Vy X

using the notation

For the given «

(So,st,¢-.,5n),

linear basis

basis function

(2.3)

(2.4)

linear discontinuous
(see Miller & Miller [5] or Wathen & Baines

1t has been shown by Lynch [6] that

(2.5)

my = Vieg — Vy (2.68)
Si1+1 ~— S84
we have
= My -3 O Si-~1 £X<51
Bi = o = My Oy Sy < x £ Si+1 (2.7)
| 0 otherwise.

A typlcal B, (O0<i<N) basis function can be seen in Fig.2.2

B: (x,83(t),v(t))

T

Fig.2.2

v

Equations determining the N+1 unknowns (v,) are obtained by
minimisation of the square of the L. norm of the residual,

namely

2

v - LCv) . (2.8)
I v I,

with respect to the ¥, (i=0,...,N) , taking $, (i=0,...,N) as
parameters (determined by the moving boundary, shock, etc. (see
section 4)), which gives rise to the Galerkin equations

< ve = L(V) , & > =0 i =0,...,N (2.9)

where

physical

<-,->*—*J-.-d1’ (2.10)

Substitution of (2.4) into (2.9) gives the set of N+1 semi-

discrete equations

s

<L (vyay + S48,) + L(v) , a4 > =0 i=0,...,N (2.11)

i=0

J =N

Z (V¢ o , o >+ 5,< By , & > + <L(v) , @ >=0

J=0

i=0,...,N (2.12)
Assuming L(v) is a linear operator, by use of an Euler time-
stepping scheme (using a © implicit-explicit factor) and using
(2.3) & (2.7), the system of equations (2.12) may be written

as

Ax = b (2.13)

where A is some tridiagonal matrix (depending on @), x is the
solution vector v at the new time level and b is the right
hand side vector again depending on © & L(v). This system may

be solved by use of a simple LU salver.

2.2 Evaluation of inner products

In this report we will consider general spatial operators

L(u), including

L(u)

Uy« (2.14)

As we are considering a plecewise linear appraoximation, the
inner product of L(v) with &, will have the form of integrals
of delta functions. The technique we use to handle these inner
products is the same as in the approach of Mueller [7] y which

is well described in Moody [31: therefore we only outline the

method below. Evaluation of

< Ltv) , & > = < Ve 9y & 2 (0<1I<N) (2.18)
using Iintegration by parts gives
Si+
Sy+1
= [veaoy 1] = Ve, « dx (2.16)
St-1
S1-1
where
—1— 8i-1 £ x < Sy
S1 — Si1-3
L TR = (2.17)
L S—
Si1+1 = Sy S;+1 € X % sy
We then have
< Vi , Oy D> = my - My -~ (2.18)
Si+1
as [v, & 1 = 0, owing to the basis functions &,

S1 -1
being zero at the two limits.

10

2.3 Nodal velocities

The MFE method has the nodal velocities &, as unknowns, the
Vi and s; being solved for by minimising (2.3) aver the
amplitudes v, and the velocities S, (i=0,...,N) to give a
double system of Galerkin equations. However, the type of
problems we are interested in here are those in which we are
trying to track a moving boundary, shock or step front, the
speed of which can usually be obtained or estimated from the
physlcal equations. Therefore the velocities of certain nodes
can be determined in advance such that they follow the
boundary, shock, etc.

The main constraint with the MFE type of approach is node
oveptaking. Boundary conditions usually require a fixed node
at elther end of the solution domain, and with all interior
nodes moving at the boundary velocity, nodes will soon crash
into the fixed node. Moody (31 overcomes this problem by
allowing only the node at a moving boundary to move with the
boundary velocity, the remaining nodes being constrained such
that their velocities are linked to this boundary velocity.
T%us at the end of each time-step the nodes are equally spaced

in elther domain each side of the boundary. (see £fig.2.3)

Key.

x - Fixed node.
Fig.2.3. 0o - Moving node.

$ - Boundary node.

time step n

X—O——o0—F 0 o) o 'n) X

time step n+1

X -0 —0 $ —0 a) s} a] X

11

This method gives good results but is limited in scope as
follows. If we consider the nodal distribution of Fig.2.3. at

a later time, as in Fig.2.4.

Fig.2.4.

X —Q —0 —$—0—0—0—0—X

we see that the nodal spacing is now very small at one end and
large at the other, which causes problems both in numerical
stability and physical representation. In the next section of
this report we will outline two regridding algorithms that
allow a moving mesh to be superimposed on a fixed grid, thus
allowing tracking of the boundary, shock etc. by use of the
methods out!ined above, as well as resolving physical

representation and numerical stability by use of the fixed

grid.

12

3. Regridding Technigues

In this section we describe two different regridding
algorithms that allow a moving and a fixed grid to be combined
into a single grid. Explicit Euler time-stepping will be used
throughout this section, although a significant implicit
version is described in section 4.

Let F, denote the initlal fixed grid, whose nodal
distribution is based on the initial data, the physical
geometry and any numerically restrictions (i.e. element size).
(See Fig.3.1, using the notation of section 2.3). Now let F,
be a sub-grid of F. at time t, containing all but a few of the
nodes of F., (lnitially F, = Fo,). The moving grid denoted by
M: consists of a group of elements (2 or 3 for a moving
boundary problem, but perhaps up to 10 for tracking a steep
front (see section 4)) which follow the moving boundary,
front, etec. through the region (see Fig.3.2.). The grid G 1is
formed by the superposition of M. on F., (see Fig.3.3.), being
the grid used at time t for the solution of the Galerkin

equations of section 2.1. The velocity of the nodes on grid F,

Fig.3.1. Fixed grid F,
X=X —X—X X X K —X —X ——X X X —X —X —X
Fig.3.2. Moving grid M,
o—F—0
Fig.3.3. Combined grid G

A=K =K~ ————— X —O0 —F—O0 —H ———X —X —X —X X X —X —X —X

13

are zero and the velocity of the nodes on grid M, are

calculated such that nodes follow the moving boundary, front,

etc.

We first consider a simple fixed grid F, (see Fig.3.4.)

with nodal positions f, , i=1,...,5 say, and initially

Ft = Fo,

Fig.3.4. Grid Fg
X X X X X
fl f2 fs f4 f5

and an initial moving grid M, (see Fig.3.5.) with nodal

positions m, , 1=1,2,3 say.

Fig.3.5. Grid M, nodal motion

my M2 M3
—o—F—o0

Then define G: as the solution grid at time t, where the
nodes on grid F¢ (F. = F, for all t) are fixed and the speed
of the nodes on grid M: are determined by the velocity of the
moving boundary at time t. The solution progresses smoothly
until, as in the above grid example, node my gets too close
to, or even overtakes, node fs;. If node m: actually overtakes
node fs; then the solution could be double valued at certain

points, when only a singled value solution should exist (see

(9]

Fig.3.6.3.
The ldea of the methods outlined in the next two

subsections is to use regridding techniques which can combine

the two grids F. and M: in such a way that nodes on the

14

moving grid M. can "pass" through those on the fixed grid F.,

thus avoiding the problems outlined above.

u
Fig.3.6. Grid Gy after node overtaking
and possible solution.
X X - o—Px—0 X %
fy f2 fs Ta fs
3.1 Node Reversal

The first regridding technique we consider is a method
called Node Reversal (NR). For simplicity we will just
consider the operation of this method on a moving boundary
problem although, as will be seen in section 4, it is also
well sulted to propagation of steep fronts and shocks
(some speclal treatment is necessary for shock problems (see

section 4.3))

3.1.1 NR Algorithm

First we introduce a minimum nodal! spacing &, this being
used for the nodes on grid M., and we assume that initially on

grid G¢ that the distance between node m; and the node before

18

it, f, say, is < &. We also assume that the distance between
node ms and the next node f; say < £. We call this situation

Mode 0. In this case we carry out the following procedure:

i) Using the boundary velocity for the speeds of the

nodes on M. advance the solution until the distance

between ms & fs = E£. (see Fig.3.7.)

Fig.3.7. Grid G.

My M2 M3

X X Q —F——0—x X X
f; fz f; f4 fs
2) Remove node f; from grid F, and include it in grid M.

(see Fig.3.8)

Fig.3.8. Grid F; & M; after step 2

My Mz Mx My
0—F—0—0

3) Using the equation for the boundary velocity,
calculate the position of the moving boundary at the end
of the next time-step (assuming explicit Euler time-

stepping) s, say. If sy > ms adjust the time step dt such

that s, = mgs.

4) Calculate the speed for node ms to travel to s,, $.

say (S, = (8 - ms)/dt).

16

5) Advance the solution one time-step with the speeds of

the nodes on grid M. set to S, (N.B. §, %2 0, i.e. the

nodal direction is reversed).

6) The boundary position is now located at node m; (see
Fig. 3.9.)
Fig.3.9. Grid G; at step 6

My Mz Ms Mg
X X Q—0 ——f—o0 X X
f,) fa fs

7) Using the boundary velocity for the speeds of the
nodes on M. advance the solution until node m; 1is located

at the position f2 on the grid F,. Call this Mode -1.

8) Remove node m, from grid M and place it back in grid

F¢, and renumber the nodes in grid M. (see Fig.3.10).

Fig.3.10. Grid F; & M; after step 8
X X X X X
t, f2 fs fa fs

9 Now grid F. = F, again, therefore in Mode O repeat

-

from step 1.

17

3.2 Node Deletion

The second regridding algorithm we consider is called Nodal
Deletion (ND). As in section 3.1 we will consider only a
moving boundary problem, although this method adapts even more

readily to shock problems than NR, as will be seen in section

4.3.

3.2.1 ND Algorithm

Although several steps of this algorithm are similar to
those of the NR algorithm, for completeness we will include
them all.

Spacing the nodes in grid M. by &, and as before, making
sure initially that no node on grid M is within a distance £

from the nodes on grid F,, 1.e. we are in Mode 0, we carry out

the following steps:

1 Using the boundary velocity for the speeds of the
nodes on My advance the solution until the distance
between my & f3 = &§. (see Fig.3.11.)

—_— = =

Fig.3.11. Grid G.

My M2 M3
X) 0 —F —0—x X X
f, f2 fs fs fs

2) Delete node fs from grid F, and adjust the nodal

f,

& f,

norm of the
and present

the L2z

so as to conserve the area

previous
the end of stepo 4.

and fq

and minimise
the
Mms

M2

o —F—o0

(see Fig.3.12.)

between
my

Representation at the end of

curve
representing the old amplitudes at nodes ms

.3.12

amplitudes of nodes mgy

under the
difference
representations.

Ei
o

18

fy

(V3
A%

=

fa

19

3) Ingsert a node into grid M, at a distance £ behind node

m; and renumber nodes such that the new node is m, (see

Fig 3.13.).

Fig.3.13, Grid M, after step 3

My Mz M3z Ms
0—0—F—0

4) Linearly interpolate the amplitude of node m, from

nodes f, & mp.

5) Using the boundary velocity for the speeds of the
nodes on M¢ advance the solution until node m, is located

at the position f, on the grid F,. (this is Mode -1.)

6) Remove node m, from grid M, and place it back in grid

F¢., and renumber the nodes in grid M.. (see Fig.3.14)

Fig.3.14. Grid F; & M; after step 8
X X % X X
fI f! f; f4 fs
My M2 M3
0 —3F—0
9) Grid F, = F, again and therefore in Mode 0, we may

repeat from step 1.

20

4 Application of the NR and ND Algorithms to Test

Problems and Special Procedures.

In this section of the report we apply the methods
described in the previous sections to certain basic test
problems, the first being a general moving boundary problen,
both in cartesian and radial geometries, and the second being
the tracking of a steep front. Then the solutions of shock
problems are considered, first with simple linear advection
and second with invisecid Burgers’. Finally the Buckley-
Leverett equation is solved using the new techniques, both in
a homogeneous form (a discontinulty having already formed) and
with a viscous term (propagation of a steep front).

It was found necessary to enhance the two algorithms in
order to obtain efficient solutions. In section 4.1.2
implicit versions of the two algorithms above are outlined
with an implicit non-linear solver being discussed in section
4,2.2. Finally in order to be able to cope with double valued
solutions (in shock modelling) the NR algorithm is modified,

thlis being described in section 4.3.

4,1 Application to a Moving Boundary Problem.

The type of moving boundary problem we will consider here
is a two-phase Stefan problem. This type of problem can be
used to model several different physical process, the main one
being the melting/freezing of water into ice, where the moving
boundary represents the interface between water and ice. One

application of this process occurs in permafrost thawing

21

around injection wells during heavy o0il recovery (see [81),
where the high temperature in the well bore causes surrounding
permafrost to melt. The accurate tracking of the ice/water
interface is important to both the quality of steam entering
the reservoir and the thawing of the permafrost at the

surface, where important machinery may be located (see

Fig.4.1).

Fig.4.1. Steam injection well through permafrost
showing water/ice interface.

steam steam
ground plant.

cr
for water to
reach

permafrost

The model we consider is a two-phase Stefan problem in
which forcing terms are present and is an amended version of
that presented by Ciavaldini in [9]1 (see Moody [31). It has
been chosen because it contains a simple analytic solution
which allows comparison with numerical results. Moreover the
velocity of the moving boundary in this problem can be stated
explicitly in terms of heat flux between the two phases. The

problem may be stated as follows.

22

4,1.1

The Moving Boundary Problem

The equations governing the problem in the two regions are

Ue = KiUus Se2et - 2k. 0 < x < s(t)
-0 <t < t;, 4.0
Uy = kRu..,‘ Sq;;'zet - 2kn 8(t) < x < 1
where s(t) is the position of the moving boundary.
The fixed boundary conditions are
u, =0 x =0
0 <t < t, (4.2)
u, = 2 x = 1
and the boundary conditions at the moving boundary are
u =
0 < t < t, (4.3)
kiui = keui = LS(t) _|
with initial conditions.
ulx,0) = x2 - g2 0 < x <1 (4.4)
The parameters are taken to be
so = s(0) = 0.25
ke = 2.0
ke = 1.0 N (4.5)
L = 4(k. - kp) = 4.0
t: = -2In(s,) ®2.77

The above problem has the simple analytic solution

23

u(x,t) = x2 - gy2et
4.

o
~

s(t) = goet’/2

4.1.2 Estimation of the Boundary Velocity

In order to be able to track the moving boundary on the
grid My it is important to be able to estimate its speed S(t)
from equation (4.3), where u; and uy are the slopes either
side of the boundary. Initially these quantities where taken
as the slopes of the piecewise linear approximation in the
elements either side of the boundary, but after several
experimental runs it was found better to introduce local
quadratics in the two elements either side of the boundary and

estimate the slope u;i and u{ from these (see Fig.4.2).

Fig.4.2, Diagram showing guadratics fitted either
side of boundary position, in order to

estimate uz and ug

grid Gg-

4.1.3 1Initial Nodal Distributions on F. and M,

Initially their are Ny (Ny even) elements on grid M.
which are placed equally either side of the boundary node with
nodal spacing £. We define @ as the distance initially spanned

by the elements on My, (2 = & x Nu) and confine the number of

24

elements N on grid F, such that

Ne < (b-a)/2Q , (4.7)

where (b-a) is the length of the solution domain, (i.e. the
magnitudes of the elements on grid F. are at least 2{Q).
[f the minimum distance between the nodes on F, & Mo > £,

then F, Fo & M = M¢, and we are in Mode 0. However if this

not the case (see Fig.4.3) we must initially regrid F. and

M. .
Fig.4.3 Diagram showing that the distance between fx & ms:
is less than &
My M2 Ms
X X O —&F~—x 0 X X
f1 fz f: fq fs

Constraint (4.7) ensures that at most one node from grid F, 13
within £ of a node on grid M. This being the case, we remove
the node from grid F: and place it in grid M, at a distance £
behind node m;, then renumber the nodes on grid M. (see

Fig.4.4): now we are In Mode -1.

Flg.4.4 Diagram showing initial grids F., M. & G
if starting mode is Mode -1

grid Fe¢
X X X X
f; fz f4 fs
grid M. My Mz Ms M4
0—o0—F—o0
grid Gg My Mz Mz Me
X X 0 —0 —F——0 X X

25

4.1.4 Implementation of the NR and ND Algorithms

With the initial grids F, and M, defined as above, we can
fit the initial data at the grid points by use of equation
(4.4), and with the boundary velocity at each time step being
calculated by the method outlined in section 4.1.2 we can
implement the two algorithms. However we must note that, in
step 5 of the NR algorithm, the moving boundary condition
(u(s)=0) applies to the node which will represent the boundary
at the end of the time step. If initially we are in Mode -1
then the NR algorithm is started at step 7, and the ND algorithm
is started at step 5, otherwise both are started at step 1.

Both algorithms were run to a time of t=2.5, with the
following data set;

Nk =2 , N = 22 y & =0.,01 , dt = 10-5 ,
the results for the NR algorithm being shown in Fig.4.5 and
those for the ND algorithm in Fig.4.6. As can be seen, both
methods give very good results, with the % error in the
location of the boundary at the final time t being
approximately 0.001% for both methods. However, as we were
using an explicit time-stepping scheme, dt < 82 for stability,
and as can be seen from the results both runs took a great
deal of cpu time (%1625 secs.)., Since it is hoped to try these
methods on more advanced problems and also perhaps extend the
ldeas to 2-d, we decided to construct an implicit version of

the algorithm in the hope of decreasing the cpu time.

26

4,1.5 An Implicit VYersion of the NR and ND Algorithms.

The main objective in constructing an implicit algorithm is
to inhibit node overtaking and allow larger time steps to be
taken. In this problem the boundary velocity can easily be
expressed explicltly In terms of the nodal amplitudes (v,) and
positions (s,), which makes it possible to solve for the
boundary position s at the new time step. However doing this
can lead to node overtaking and hence disrupt the solution
(see F1g.3.6). Miller & Miller (seel[5]) overcome this problem
by use of penalty functions, but this makes the method quite
complicated and also involves problem dependent tuning
parameters. We declded to use a Predictor-Corrector iterative
method for.time-stepping the nodes, with an implicit Euler
time-stepping method for the nodal amplitudes.

The NR & ND algorithms are as before except for the steps
which involve time-stepping, which are now carried out as

follows.

4,1,6 Time-Steppling Using the Implicit Algorithm

1) Calculate the expllcit velocity of the boundary at
time level n, §" and use this as a first estimate to the

implicit velocity s"**. (i.e. set &"*! = gn)

2) [f necessary adjust the time step dt, so as to avoid
nodal spacings becoming < £ or if a node from grid M. has

to be dropped off onto grid F;.

27

3) Calculate the nodal positions at time level n+1 (note

that step 2 avoids node overtaking),i.e. gr*t=sn+dt,.gn+!?

4) Using the above speed, nodal positions and dt,
calculate the solution of the Galerkin equations (2.12)
at time level n+i using implicit Euler time-stepping.

(1.e. still solve Av = b as equations are linear)

5) Using the solution at time level n+l calculate the

implicit velocity sn+t,

6) Repeat from step 2 until the implicit velocity s+

converges to a certain tolerance.

4.1.7 Implementation of the Implicit Algorithms.

with Error Measurements.

The grids are initialised as in the explicit case (see
section 4.1.3). The boundary velocity is calculated by the
method outlined in section 4.1.2. The first runs using the
implicit algorithms were done using a similar data set to that
used in the explicit method;

N = 2 , N = 22 , £ =0.01 , dt = 10-2 ,
the only difference being that dt is increased by a factor of
10*. The results for the two algorithms can be seen in
Figs.4.7 & 4.8. In both cases the error in boundary position
at the final time is less than 0.3%. Although this is worse
than the explicit error, the cpu time used has been reduced to

an average of 10.5 secs, this being a decrease of = 99%.

28

Next it was decided to decrease the number of nodes on the
fixed grid F., keeping the other parameters the same. First Ne
was decreased to 10 (see Figs.4.9 & 4.10) and then to 5 (see
Figs. 4.11 & 4.,12). As can be seen from the results, the
moving boundary was accurately tracked (average error of
0.29%) with cpu times goling as low as 7.5 secs.

For an accuracy test it was decided to include some error
measurements for both methods. The data chosen was as above
with Ne = 10 (Figs. 4.11 & 4.12) and it was decided to first
measure the absolute error between the numerical and exact
boundary veloclty, for ten iterations before and after the
first node reversal/deletion (n-10,...,n,...,n+10). At time
step n the velocity calculated is the first velocity
after node reversal/deletion has taken place. The error for
the NR algorithm can be seen in Fig.4.13 with the ND error in
Fig.4.14., 1t is interesting to note that after the node
reversal/deletion iteration, the error actual decreases (quite
considerably for the NR algorithm), although the overall
pattern i{s that the error gradually increases, as might be
expected since the implicit method tends to overestimate the
position of the boundary (see appendix).

Finally 1t was decided to measure the relative L2 error
(see Heath [10]) between the exact and numerical solution for
ten iterations before and after the first node
reversal/deletion (n-10,...,n,...,n+10). The results for the
NR and ND algorithm are shown in Figs.4.15 & 4.16
respectively. Here it is worth noting that although the error
slightly increases during node reversal/deletion, the general

trend is of a decreasing Lz norm.

29

' 3 . ee ‘01 = (eves) ndo
8’V 2 ¥ 8°0-
62950 = peede *ju) oexy
9°0-
i 9128y °D = pesds "aul wny
1707 szugn = sod a1 g
3
. ¥ €707 LG =vod i wy
O _ g A 0 » = L —m.—N O
— + 000000t = ®3ey3
240 000010°0 =
00000S2 = 3 ©3 &
r 50
00010 = oeds -pou uiy
r 8°0
Z = "wi ul swews]
870 G2 = sjuese)e jo oN
T0° spoN e3eyeq
‘U108 JE3|JeunN X WITE0ed NWIIIS V
"ujos 30BX3 -~ T2l AJ390000) USISOIUB)
5 81 8976191 = (soes ndo
9y 513 L g0
629ch°0 = peeds -ui X3
9°0-
! 0s9gy D = peeds -3u) eny
IR e
-
% ¢ 0 g = sod -
0l ¥, 910 9 3 852280 wy
t 000000°D = ®38y3
1z 0100000 = 3
00000G 2 = 3 ©3 gy
T 40
00010°0 = dede ‘pou uly
r 9°0
2 = ‘| u| swews]
e GZ = ®3uevela jo of
-0l spoN eieyeq
‘U1os jedjJeunN X WIE03d NVI3IS V
‘ujos 30ex3y - A | LJuzevosq ue|s81e)

. : = (soes) nda
L'y 8y . 20l .
629Ch°0 = poeds *au1 oex|
- OIOI
{ 9128y°0 = poads - wy
1707 ezop = sod - =g
K
z ¢ 0 n = mod °*
0°1 - 918 o Mmo 11528°0 = ®0d i wy
0000005 = ®30y3
1z 000010°0 = P
0000052 = 3 °3 6n
T %0
000100 = deds pou uly
T 90
2 = *ul ul swewe|]
§8n 5z = sesse jo of
o S
‘ujos 1831JBUNN X AITH0ST WISV |
*ujos 30ex3] - + c°l £J30w031] LE|18018])
G'p '3y 2 g i gs 2591 = (soem ndo

‘ujos jEed|JewnN X
‘ujos 1dex3 -

629570 = peeds “3u1 ey
0598y °D = peads -au) Sz__
652287 = s0d ~un oexg|
09220°0 = 200 -au) any

0000000 = S3ey3

010000°0 = 3P

0000052 = * ©3 dn
00010 = dede “pou ui|
Z = "l ul swewey
GZ = ®3jueveld jo ON

opop eeJeAmy

KJyjec08y us|sB3IIB)

30

21’y "8y

'U10S 1ed]JeunN X
“ujos 398x3] -

952 = (soes) ndo

62984 °0 = peede "aui dexa
929¢y ") = peede ‘i wny
652287 = sod i 283
£1628°0 = eod "l wny
0000001 = =33
000010°0 =

0000052z = 3 03 dy
00040 = deds -pou uiy
g = "wi ul s3usuely

8 = ejueseje jo o

epoj e1e12

A3198086) UB|80310]

1'%y 813

*'U)0s B3| JeunN X
“ujos 398x3 -

2L = (sves) ndo
6298%°0 = peede cauy dexg
9s9¢y°D = peeds -aul wny
652280 = sod raul sexy
¥1628°0 = 20d ‘i wny
0000001 = ®3aeya
000010°0 = P

00000S'2 = 3 °3 dn
0001070 = Seds pou uly
Z = ‘iul ul swewe |3

g = ®auase)s jo oy

epo esisaay

AJjemoer] LB [e931.8])

01°% "81F

*u)0s JedjJewny X
“ujos 128x3] -

WIT808d RVIIIS ¥V

¥G9 = (sdes) ndo

6Z9ch D = peeds -ul dex3
BE25n D = peeds | wny
652207 = sod caul dexg
815200 = sod “aui eny
000000°1 = ®3sy3
00001070 = ¥

pO000SZ = 3 03 dn
000100 = dede ‘pou uly
2 = "yl u| suewe1]

g1 = ®3Uese)8 4o o)
apojy e1018(

KJ10000) uB|eeIm)

6% '8

‘uj0s 1BDLJBUNN X
"ujos 3dBX3] -

RITE08d RVAIIS Y

298 = (soss) ndo
629570 = peeds -ul oexy
BELEy D = Poeds -juy wny
6522870 = ®od -uy dex3
01520°0 = %0d -aul wy
000000°1 = ®3y3
0000100 = P

0000052 = 3 03 dn

000100 = 28ds ‘pou uiy
2 = °wul ul sewe)]

g| = sjvevel® 40 O\
apoN asJenay

£urevoen us|se31u8]

31

T 010070

IK/I L\xrl.xa.lxuiun

e

T Sl00°0

98°0 = (899% ndo

000000 °1 = ®I®y3

00001070 =

0B0I0D = deds -pou uyy

Z = "wi ul swees)]

g1 = 9wes0)8 40 o

opoN e1sjeq

AJjewosq us eejrse]

42°0 = (®30e) ndo

00000071 = ®asy3

000010°0 = P

00010°D = veds pou uly

g = "Wl ul sweee]

€] = 93Uewe1® 4O ON

opoy essensy

Aa3ewcen us e8I)

990 = (s3e) ndo

000000°) = ®38y3

0000100 - W

00010 D = deds pou uly

Z = "Wy ul epesey

€| = sjese)s jo oy

opoy ®18100

Assewonny vejenise]

29°0 = (s2ee) ndo

000000°1 = ®3843

000010°0 = 3

00010 D = Seds pou usy

2 = *ul ul sewny

g1 = swese1e 4o oy

spoy essenmy

Aasewoeq usseie]

32

4.,1.8 The Radial Moving Boundary Problem.

Since the eventual aim of our work is application to oil
reservoir modelling, 1t is appropriate to consider a radial
symmetrical version of the previous moving boundary problem,
as reservoirs are often taken to be radially symmetric. The

problem is similar to the cartesian one and can be stated in

the form

[
-
I

kKidel2u - se2et - 4k. a < r < s(t)

- 0 < t < t,

c
-
|

kpdel2u - se2e*t - 4kg s(t) < r < 1 (4.8)

where del2 = 1.d (rd)
r dr dr

[o R

where s(t) is the position of the moving boundary.

The fixed boundary conditions are

U, = 2.a r

n
(]

0 <t < ¢t (4.9)
u, = 2 T

1
[

and the boundary conditions at the moving boundary are

u=20
0 < t < t, (4,10)
KLui - kepuif = LB(t) _|

with initial conditions

u{r,0) = r2 - g42 0 < x < 1 (4.11)

33

and parameters

Se = 8(0) = 0.25 1

ke = 2.0

ke = 1.0 - (4,.12)
L = 4(k. - ks) = 4.0

ti = -2In(sg) ® 2.77

Implicit solutions to the above problem using both the NR
and ND algorithms were constructed.

In this case we replace the inner product < - sy = > by

< =, = > = I r . = . = dr (4.13)

Which ensures conservation, also the equation exhibits a
singularity at the origin and therefore the solution domain is
taken to be [a,1], where a is chosen as a = 0.1.

The numerical parameters initially used were the same as
for the first implicit case on the cartesian geometry,
namely,

N = 2 , N = 22 s & =0.01 , dt = 10-2 :

The results for the NR algorithm can be seen in Figs.4.17,
with those for the ND in Fig.4.18. It may be noted that the
error between the exact and numerical boundary position at
time t=2.5 is slightly less for this case (0.08%) than the
cartesian one, although as can be seen in Flgs.4.19 & 4.20,

when Ne¢ is reduced to 10, the numerical boundary location

34

begins to trail behind the exact one, with an error of up to
-3.8% when Ny = 5 (see Figs.4.21 & 4.22)

A reason why the accuracy of the numerical boundary
decreasse with Nf for the radial problem and not the
cartesian, may be attributed to the "area" represented by each
element. For equally spaced elements on the cartesian grid the
areas represented by each elements are equal, but for the
radlal case the area increases with r. It was therefore
decided to insert an extra element near the outer boundary
(r=1) on the fixed grid Fo. Dolng so increased N to 6, but
the resulting error in numerical boundary location was reduced

to -0.71% (see Flgs.4.23 & 4.24).

35

‘ujos yJedlJsuwny ¥
‘ujos 3dex3 -

- 469 = (o308 i.M_
629540 = peeds -1 dexy|
ZBZEY "D = peede ‘) wy
6522870 = sod “aul dexy

91998°0 = 800 31 wny

000000} = @38y
0000100 =

pO00IS T = 3 °r o
000100 = oeds pou uiy
2 = °wul ul swews3
g1 =~ sjeseie jo o

spoy s1sjeq

AJ3au09q ._o_nozm

61°%v 313

‘uj0s ed1JewnN X
*ujos 30ex3] -

i

|

®
<
i

)
=
1

L4
.

o
:

o
S

FEp—
62957 °0 = peeds °3u| dexy
282Ew D = peeds | wny
652280 = =0d - seq

21998°0 = sod -au1l wny

HIT803d NVJ3IS ¥

S B B e o I

a
=

=
S

)
=

©
S

o
»

o

0000001 = ®3eya
D00glO°D = P

0D00OS 2 = 3 °3 dn
000100 = a=ds -pou uiy
Z = "1 Ul swewss3|

gi = ®wessjo jo o
spoy esJenay

43394039 12 1Py

8TV ‘81

*ujos jedlJeuwny X
*ujos 3dex3] -

B &1 = (sus) RL
62985 °0 = peede “aui oem_
$S9cy°p = peede - Sz_
652200 = sod -l uem_
z£52870 = vod caun Sz_
000000 °1 a.:ﬁ_
000000 = 3P

DO0O0S 2 = 3 °3 dn
000100 = veds “pou uiy
2 = "l u{ B8wews]

G2 = ®auese|® jO Of

apoy esejeq

Asaseoen) eipey

*ujos jedjJeunN X
‘ujos 3Jex3 -

g2l = (saes) ndo
629570 = pesds *3ul >
1

€695y D = peeds -ul wny;

652280 = s0d -3l S8z
282070 = sod -l .sz_
000000 *1 u.:.._.m
oocoto0 = L

0000052 = % ©3 3_
000100 = deds ‘pou Ez_m
Z = °WJl Ul swewe]

§2 = 92ueme)s 30 O

epoN eeJeARy,

Aasouoen 181pey

. —

36

Hm.ol 0672 = (s2e%) ndo | €7°% ..mﬂ ._.Vm.al 90'9 = (eaem ndo
| 6295770 = peads “aul o0 | 6205w '0 = pesds ul oexy)

+ 90~ T 90 _
_ HeZey D = pesds ‘3u| wny 982SH D = poeds au wny|
% o 6522870 = sod -auy amxg 107 652280 = sod -aug snm_
ﬂ €07 se998°0 = eod cau woy 25998°0 = sod ‘aui !z___
’ 00000071 = eey3 00000071 = sama|
! "
.H_. z°0 ROOGEDNE: & o8 000100 = |
u_ 00000SZ = 3 03 dn D0000S 2 = 3 o3 dn

.m. 7°0
m_ 00010 = veds 'pou uiy 000100 = veds pou uly!

TS0
! Z = "l ui swews |y Z = "Wl ul siwewe]3
. ﬂ_
.“.mo 6 = swess)s jo oy 6 = ®juesers jo o
._H 0°1 epoK e1010g 70 opoy essenmy |
'ujos 1ea)Jeuny X HIT808d N335 ¥ i ‘uj0s 18d)JeunN X AITH0Sd NWWIAIS v _
ujos 328x3 ~ .m. rd | Aszeuven ao_nﬂa_“ ‘U108 308XxJ — 271 AJ30u00q ._o_num__

s —— L

—— S i R . - B —
22’y "8y T.o- gatin 1= Nizose e 12°% "8y 8- egel = =) e

62987°0 = peads -3u; dexy 6295y °D = peeds -ju; oexg

]

S902y°p = peeds ‘3| wny S92y D = peeds -au) wny

652200 = sod cau) dexy 652280 = sod c3ui seqy

coeE80 = sod - ey S9e£0°0 = s0d i any

0000001 = ®3ey3

0Q0000°t = ®3843

0000100 = 3P 000010°D = P

0000052 = 3 03 dy 0000052 = 3 o) df

000100 = dede ‘pou uly

000100 = 9eds pou uiy

| H f

| it |
ﬂ m Z = "wi ul sween3| “ Z= s ut uu..!i.._m_.
| ._n a8 = ®juewane jo oz” _ 8 = 23Uswe)® JO Oj|
_ _
_ ._r epoy e1010g| ooy esueney |
Ujos edjJeuwnN X HITB08d NV33IS ¥ _ ‘U103 1BdlJBwnN X HITH04d NV3IIS ¥ |
-ujos 1dex3 - T 2l A330u089 Ao__ia_ ‘ujos 138x] - 4. Al Aa30uoen 101pey

37

4,2 Propagation of Steep Fronts.

It was decided to try the NR & ND algorithms on a more
demanding problem than those described in the last section, as
those problem had the advantage of having the value at the
moving boundary pre-determined (u(s)=0). The propagation of a
steep front in the problem, with the requirement that the

speed of the front can still be estimated in some form,

suggested Burgers' equation which is considered below.

4.2.1 Burgers' Equation

Burgers’ equation is an advection diffusion equation of the

form

Ug + uu, = Eu,, x € [0,Db] (4.14)

This equation has a suitable exact solution (see Johnson [111)

of the form

ulx,t) = f(e&) (4.15)

¢ = x - ut - B8 (4.16)

f(p) = L (4.17)

Boundary and initial conditions are given by the analytic

solution (4.17) as

38

ulx,0) = f(x - &) (4.18)

uCO,t) = f(-put - M (4.19)

ulb,t) = f(b - ut - B (4.20)
The arbitrary constants in (4.17) are chosen as « = 0.4,

B = 0.125, p

0.6. For these parameters the initial data
represents a steep front centred at g between the states 1.0
and 0.2 with the steepness of the front depicted by &£.The
exact solution represents a travelling wave solution, the

speed of propagation being p = 0.6.

4.2.2 Numerical Representation of Front & Front Speed

10 elements were used to represent the front on grid M,
and, since the initial position of the front was known,
elements were placed at a spacing £ either side of it. The
spacing £ chosen was dependent on the steepness of the front.
(i.e. €) After several experiments i1t was found to be best to
use a value of 3€. In order to estimate the speed of the front
it is important to know the value of u on both sides of the
front and therefore, as the front is being represented by the
nodes on grid My, 1t is important to know the number of the
first and last node, i.e. in the present case 1 and 10 or 11
(depending on the Mode). For convenience we will call these
numbers iff (i1 first front) and ilf (i last front)
respectively. The initial distribution of nodes on grid F, is

the same as described in section 4.1.3. Finally before any

39

runs can take place the actual speed of the front has to be
estimated and since we are dealing with a very steep front
(width = 30¢ where g€ % 10-*), we assume that it has a shock
structure with the values u(iff) an u(ilf) representing the
states on either side. We then apply the Rankine-Hugoniot
shock condition to the advective part of equation (4.14) in

order to estimate the speed of the front, i.e.,

s = B(u(iff)2 - u(ilfrz) = R(udiff) - uCilf)) (4.21)
u(iff) - ucilf)

4.2.3 Numerical Results for Burgers’ Equation Using

Numerical Newton-Raphson

Using the methods outlined in the previous section to
initialise the grids (F, & M.) and calculate the speed of
propagation of the front, several runs were carried out using
the implicit version of the algorithm, as described in
sections 4.1.5 & 4.1.6. However, as the differential equation
1s now non-iinear, the Galerkin equations produce a set of
non-linear equations which are solved using a general Newton-
Raphson technique, where the Jacobian is calculated
numerically.

The initial numerical data set was :

Nw = 10 , Ne = 5, dt = 10-2 , & = 10-2 , £ = 3¢ ,

The results for the NR algorithm are shown in Fig.4.25 and
those for the ND algorithm in Fig.4.26. Very slight
oscillations occur in the solution, of the order of 0.03%
(uCilf) = 1.00259 instead of 1.0 in Fig.4.26), but the overall

measure of error (L norm) at time t = 5.0 is very small being

40

only 3.1 x 10-3. It was then decided to use the same, data
set, but with dt increased to 0.1, results for which can be
seen In Figs.4.27 & 4.28. The point to note here is that for
the NR algorithm the L, norm increases by just 0.00045,
whereas the cpu time decreases from 24 secs. to 9 secs.: for
the ND algorithm the L: norm actually decreased as the time
step increased.

Finally in this sub-section it was decided to decrease £ to
10-* with the data set

Ne = 10 , N =5, dt = 10-2 , & = 104 , & = 3¢ ,
the results of which can be seen in Figs.4.29 & 4.30. Again,
very slight oscillations occurred (of the order 0.11%) for
both methods, but the overall result was good. This was also

the case with £

10-% (see Figs. 4.31 & 4.32) where the data

set was

N = 10 , Ne = 10 , dt = 10-2 , € = 10-%5 , £ = 3¢

here the oscillations being of the order O0.13%.

4]

=..‘ P ... o.m .M.m rn..w ¥Z 0% o._ N._ . u..o LK) 02T = [moes] pdi
291100°0 = wwou Z] 17°% 813 ¥BSE00 0 = ®wou 2]
% 4210090 = poeds % o s s Lz 291009 °0 = peeds
26200270 = 140 626002°0 = 10N
250000°8 = ©30N 1y ySh646°0 = @I1IN
0000100 = uol10dg 0000100 = uopisdy
000000 '} = 938y T To0 000000 °1 = =38y]
000001 °D = P 000001 "0 = P
000000 S = 3 °3 & L T7e%o 000000 S = 3 ©3 o
_ 00£0 D = ssds pou uly D0SD D = veds pou Uiy
| 01 = wouj ul e3ussely . * * L 01 = 3uoup ul e3uese)]
M "ujos jeajJewny X “NOTIVIOS Sgoand 9] = seun e jo o *ujos 1edlJBuNN X "NOTIVIOS Sa30ang ﬁ 91 = 83US8Y6 jO o
[‘ujos i10ex3] - +2z21 ‘ujos 308x3 - Lz
_!I _ opoy e300 SpoN 9sIeAy “
Pv € 2T 8¢ %¢ 0¢ 91 &1 80 &0 sz = oem nd ¥ 9% 2% 8¢ %¢ 0¢ 91 21 870 970 mﬂem 3 Sy
S, $ g} } - —t— +——
m 97°% ‘381 29110070 = wou 2] GzZ'p ‘811 £E1500 0 = woou 2]
mu | - 5 124 22009 °0 = peedg N & 1z9 209009 0 = poeds
_ J J 942002°0 = W1IIN SZ110Z°0 = $inn
| i + 4 65200071 = €3N 149 68966670 = #31N
000010 °D = uoriedy 000010 °0 = ue) Iedy
7 X T90 000000 °} = ooyl) 190 000000 °1 = ®3oy|
000010°0 = 3P 00001070 = 3P
~ b 3 T80 Sooao.mnuoun.; E T80 000000G = 3 °3 d
_ W‘ kn Sma.ouu&n.uocc_z_ _W.. D0S0D = deds pou uiy |
_, — oo FOU | gy = awou i saueme3 i) * y .m:, "1 bi = avouy ur saueseg
_ *ujos ed|Jewny X “NOTIVIOT Se30dnd 91 = 83uCUs)8 jo o “ "ujos jedjJewny X “NOTIVIOS Sg39dd _ 91 = Siuaua)e o oy
_vl *ujos ioexy - +2°1 o SR _ *‘U)0s 108x3 - +2° epon 0..531_

42

" o°% zt 82 %e 0¢ 91 21 80 %10 iy o't 2T B¢ %e 0 91 21 80 970
99°gs = (so6®m ndd 81 = (s0es) ndb
it t + —r——tr—— TEBNE IRGE G e Gen frd SEY M Fre Yo Semts Seas Soce sem e B Se amm g
Ze'v "3y ¥00910°0 = wwoU Z] 1€°v "8y 0091070 = wou Z]
129 S09009 '0 = peeds | . 509009 °D = Poeds
01£202°0 = G100 1 * i ! 01£202°0 = H11N
199 1068660 = (33100 x % + +-.q.o 006866°0 = #iNN
“ 010000 0 = voy18dy i . 010000 D = o) 1edy
| |
|
% X190 000000°1 = ®384) X % ! To0 000000 °) = Saeqt
| 0000i070 = 3P 00001070 = 3P
_ . .
» % % T80 000000 S = 3 °3 3 xT80 000000 G = 3 03
| |
]
‘ 5 "— m »1 £0000°0 = 9eds ‘pou uiy 4 £0000°0 = deds pou uiy
| I T 0L | gy = awouy ui e3useei3 AT W 0711 oy = 3uowy us euewery
‘ "ujos 1edlJeuny X Igmlgﬂmal |2 = %3lUeEs]e jO ON *ujos je3dlJewnN X Igulwg I = 33UGuS18 J0 O
‘ujos 30ex3 - +2 ujos 398x3 -~ +2°l
L spoy @329 SpON osJaA0y
p¥ 9% ¢t 8z we¢ 0<¢ 91 21 810 %0 i’y 9€ 2t 8¢ %z 0¢ 91 21 810 ho
| 9642 = (8308 ndo gy'2 = (soem) ndo
I —— i H— ==t +
| 0e'y "8y YESHI0 D = woou Z] 62°% "8y ZE9910D = wou Z]
’ “ i i £5£109 0 = poedg ’ .] S5E109 D = peeds
* % = m 2 H 20 x|xm % H % H ez
. i . 29220270 = 0N _ + | | 19220270 = 10N
i i _
+ E Ly Sh6666°0 = HINN x E “,F L B 6Y6666°0 = NN
| |
001000 "0 = wo)Isdy ; f 001000 °0 = uo]1edy
% 3 9 000000} = 3oy | A * 197 0000001 = eseuy
i
_ 0000100 = P m _ 0000100 = 3P
1 1 _
X T8%° 000000 S = 3 02 9 i 4 % x18°0 000000 5 = 3 03 dy
_ “ 1}
ww * 00000 = deds "pou uly [w x .rFi 0S000°0 = 98ds pou uIy
i - - _ s . |
i 1] = 3Uouj Ul BUEW|] 01 = ouy Ul 93ueWe|3]
‘ujos 1esjueuny x NOIIVIOd SE3TEME 91 = s1ueee)e jo oy -ujos 1eajuewny x NOILVIO Sg3odnd 91 = ssuauoya 40 oy
‘ujos i0ex3] - TZo ‘ujos 108x3 - +2Z°l
| spoy e39)eq _ apoj eseAmy

43

4.3 Shock Problems.

In order to represent a shock or contact discontinuity we

may use the idea of a point in the solution domain being

double valued (see Fig.4.33)

Fig.4.33 Diagram showing double valued point at s,.

ut

| i |
Sk -1 = Sk + 1 X

The ND algorithm can be used without amendment on this type
of problem, but for the NR algorithm trouble occurs during
step 5 (node reversal) when, as in the above case, node Sy .+
must represent the shock at the end of the time step. This is
because at time-level n it 1s only single valued and it is

then required to be double valued at time level n+i.

4.3.1 NR Shock algorithm.

This problem is overcome by using the the NR algorithm

(implicit or explicit version) with step 5 amended as below.

44

5a) Assume at time level n the shock is at node Kk, having

values of ui & ui.(see Fig.4.33)

5b) Take node k to be single valued with value ug and
node k+1 to be double valued with upper value uz and

lower value ut = uy.,;.(see Fig.4.34)

5¢) Advance the solution one time step, with the speeds
of the nodes on grid M, set to S, (see steps 3 & 4 of NR

algorithm)

Fig.4.34 Diagram showing double valued point at s,.,.
i.e end of step 5h.

E

Uk = Uk a4y

4.3.2 Shock Test Problems.

It was decided to apply the above algorithm and the

ND algorithm to two simple test problems. First we consider

the linear advectlion equation

u, + u, = 0 (4.22)

where the initial data is chosen as the unit step function

45

situated at x = 0.5., the speed of the front being calculated

from the Rankine-Hugoniot shock condition, which gives

Se = 1 (4.23)

The grids are set up as in section 4.2.1, with the shock
centred at x= 0.5 on grid M., the speed of the shock

(nodes on grid M:) being given by equation 4.23 above.

As < uy , a4 > = 0 for all 1 (assuming an internal boundary
at the shock (see Wathen(41)), then u; = 0 for both algorithms
up to the point of node reversal/deletion. During reversal
(NR) node k+1 is double valued using the routine above, which
causes my = O therefore preserving the exact solution through
node reversal (see Fig.4.35). Also the ND algorithm gives the
exact solution during deletlon, since the solution is a

constant to the right of the shock (see Fig.4.36).

The second test problem is the inviscid Burgers’ equation

Us + uu, = 0 (4.24)

using the same initial data and grids as for the linear

advection equation, with the speed of the shock in this case

being given hy

S« = ®(ug - ug) (4,25)

Again both methods exhibit the true solution (Figs.4.37 &

4.38) by the same argument as above.

46

Py 9% 2zt 8¢ veZ D2 91 21 80 %D P — Py 9% Zt 8¢ %2 02 91 2'1 80 %0 & = odo
.IllI.llIITlT.—:II'.lT-Tle.'AlT‘-‘“ "TT.‘I.'.-IT!'J +—t —t e+ +
. . - x . . = »
gc 'y "8y 00002 = M x jamq L€ % 813 00002 = ¥ eqg
00002 = x wy 00002 = (> wy
129 129
0000°0 = (*N 30eqg 0000°0 = (*nN 0=g
0000°0 = ¢ *NN =y 0000°0 = { +N wy
10 T
0000°1 = (-1 Weqg 0000°1 = (-})N g
oo00°L = (-1 =W 0000°t = [-MA Wy
790 T9%0
0000°s = Syl 0000 °1 = ®3my(
000010°0 = ¥ o000I00 = ¥
T80 T80
000000 € = 3 ©3 cyy 000000 € = 3 °3
001070 = 3sde pou uly 00100 = seds ‘pou uyy
* % o 01 r| % 4 # 0°)
2 = Jooe u] sumes)3 Z = jo0qe u] symem 3y
ujos (8d1Jenny) “NOTIVIOT Sao8e 6 = swmwe)e jo o 7os j8ajJewny X “ROTIVIS Saare 6 = sumes)e 4o oy
‘ujos idexy -~ Tl oS 0] - “UIBTANT TZ7
“UTSTANT epoy o110 =as,
Py 9% 2% 8¢ %7 0C 91 21 81 90 '€ 5o o Pt ¢€ 2 B¢ ¥¢ 02 91 21 80 %O T 574
..lll.l....IlTsz...ﬁ.Tl.".x“."l.ni .I|.|..4.!|_|.|T!..1..|.Ill¢|..l...xl|..|.ix..4..ual
er . DDOSE = (% 39eg Lo . 000SE = A)* weg
9¢ ‘% " 813 Ee ' 81y
DDOSE = > wy DDOSE = M>* wy
tzo 1290
000070 = (*11n 083 0000°0 = (+N)N 3°eg
0000°0 = (*mn ~wy 0000°0 = *mIN Wy
+40 TV
0000°1 = [~NN eg 0000°1 = (-NN 9eq
0000°1 = (-1N N 000D°1 = (-N WY
199 790
0000°1 = 3=y 0000 °1 = =3syy
0000100 = ¥ 0000100 = ¥
+98% 1070
000000 € = 3 ©3 o 000000 % = 3 ©%
00100 = 2sds ‘pou uly 00100 = deds pou wiy
R =t - R Hm——— D | e ————— 0°|
Z * 190s u] euses|] Z = 330ye u] suwee)3]
ujos jedseuny X “NOTLJ3AOV avanNT T 6 = sumes)® jo o) ‘ujos (eojJewnN X “NOTIJFAOV Gvani T 6 = s3men)e 4o o
“ujos 30ex3 - 127 ‘noe 10ex3y -~ 1+
opoy eiejeq opoy ssseany

47

4,3.3 The Buckley-Leverett Equation.

The final test problem considered is again related to oil
recovery (see e.g. Wathen [41), i.e. the Buckley-Leverett
equation which may be used to model the displacement of o0il by
water in a water driven recovery process. First we consider
the inviscid (or homogeneous) form of the equation (assuming
no caplllary pressure) in which a shock is present, and
finally the viscous form of the equation in which a steep

front is present.

The inviscid form of the equation can be written as

ug + f(uw), =0 (4.28)

where

f(u) = u (4.27)
uz + %(1-u)2z

The boundary condition on the upstream side (x=0) is taken to

be u(0) = 1 with the initial data chosen such that a shock is
present at x = 1.3 with wui = 0.4 y Ut = 0.2 , with a tan
curve fitted to the left of the shock and a quadratic to the
right. Using the method of characteristics it 1is possible to
obtain an exact solution to this problem, and a comparison
between this and the numerical solution can be seen in
Fl1g.4.39 for the NR algorithm and in Fig.4.40 for the ND

algorithm, where the initial grids are set up as in the linear

advection case with the speed of the shock given by

) - fug)H 1 (4.28)
4

c
xl gt
I
c

Using the same equations it was then decided to use some more

48

realistic initial data (see Wathen [12]1), the shock initially
being at x = 0.5, with the value to the right being zero. The
results in this case for both methods are shown in figs.4.41 &
4,42, with very good comparisons between the numerical and
exact value at the top of the shock at time t = 1.5 (within
0.6%).

Finally equation (4.26) was modified to include a viscous
term (see [131), 1.e.

Ug + f(u), = Euuy (4,29)

where £ was chosen to be 10-3 , the initial data being such
that instead of having a shock at x = 1,3, a steep front is
centred here, and thus the initial grids are distributed as in
section 4.2.1, First runs were done using a quadratic to the
left of the front (see Figs.4.43 & 4.44). Although an exact
solution does not exist to this problem the results compared
favourably with those for the inviscid case. Finally the
initial data was chosen to be zero to the left of the front,
with results which can be seen in Figs.4.45 and 4.46. Here it
should be noted that the solution at the top of the front
exhibits considerably more curvature than in the inviscild
case, probably due to the fact that the second derivative u..
exists at this point due to the nature of the viscous
equation, where this is not the case for the inviscid

equation.

49

*Ujos 108x3 -

epoN e1e)eq

Vo] = pesspnds bt o€ zt B¢ "¢ 02 91 21 80 #1 Coitoe &) B

61€572 = x 1eq 5% .\mm T 618572 = M* ¥eqg

SOEGT = [Mx wN 5 €0E5°Z = % wN

0000°0 = [*1N 399 000070 = { +1q 9o

000D°0 = [+11N wW u] 0000°0 = (+nn W\

§595°0 = (-1 9o : " 659570 = { ~1N o3

G295 = (-1O e\] ¥Z950 = (-V "wN

00001 = e18y) - 00001 = ®38y[

00001070 - 3 0000100 = P

000005k = 3 °% o =2 00000S ‘1 = 3 °3 &

001070 = 9ede °pou uly 0010°D = dede pou uiy

9 = 3o0ys Ul 93ueue]] . 9 = }o0Yys Ui LT

*Ujo8 1edtJewny X RS ECEL R ERRN: ZZ = s1ous)a jo oy *U)0S 1edtJewny X T IIEEIRITIITONG Z2 = swouse jo oy

‘ujos 31dexj - A St *u)08 1d8xX3 - 2°l wpon wasesen

g9k = (8308 nda it @c€ 2t 8¢ wZ 0z 91 &1 80 70 opite =a 550 B2

0ZhE = Mx 19exg R J.mm, | OsZhE =)% wexg

osZyg = tux wN == guzy e = M* e\

6170 = (+1N 39eqg GE1°0 = (NN e

GBSI0 = [+MN "W - ygELD = (+nn ey

282770 = € -NiN Weg ’ #829°0 = { -0 92

S0 = (~DR wN 9520°0 = (-un wW

00001 = =30y 7 00001 = ®3ey)

0000100 = 3P) 00001070 = W

00000Z "1 = 3 °3 o o DOQOZ "L = 3 ©3 o

00100 = dede °‘pou uly 001070 = deds pou uly

9 = 390ys uy sauesely o 9 = ¥30ys Ul =IueLs)]

*ujos 1edlJawny X EEERELELERDERFR:N 22 = ®juaus)a 40 ON ‘ujos jedjJaunN X T IIFEIAITIITONE 22 = ®juauwaa jo oy
T "ujos 3108%X3 - K

epo)y osisAey

50

p*y 9% 2% 87T W%

‘ujos 1edlJemnN X

gz 9?'1 2°

80 %0

T2

90ES = (soem) ncb
966255 | = poedy
000000°0 = #1110
0S5.25°0 = 6N
000100 0 = uoy yedy
000000 °} = ®3ey)
0000100 = P
00000S°) = 3 o3
00100 0 = dwde pou iy
0} = 3uod} U] suees)3
1€ = sameee jo o

SpoN ewqeq

' 9% 2%

8¢ %%

“unos jeajJemy X

e 91 27

T¢I

8809 = (soem) ncb
298258 °) = peedg
000000°0 = K10N
YWELZ5°0 = @30N

0001000 = uo) Iedy
000000 °) = 38y

000010°0 = %

0000054 = 2 °3 d

00100 °0 = dede pou ury
Df = woy ul sumeey
IE = swewe)e jo oy

SpO) esJaAmy

p* 9% z® 8¢ ¥¢ 0¢ 91 1 B0 "0

%%y 'Sy

‘ujos jedjdewny X

"
it

TESEAATAETIE

T2

90'(g = moen nb
£06169 °} = peeds
6218810 = B10n
96950 = 450N
000100 D = uo) fedy
000000 °} = ®3sy
0000100 = 3P
000002°1 = 3 2%
00200 °0 = deds pou uIy
D) = 3WoJs U1 SIess]]

IE = saumwe1l jo o

SpoN #19)9g

DY ¥ €% BT YT

" ep'p '8y

“ujos je0jJseny X

127

209 = (soee) ncb
ovZ269 L = peedg
Y¥EREL D = 10N
=Y 0 = #iun
000100 D = vo) Ied3
000000 ") = ®38y]
00010 = ¥
000002 °4 = ¥ ©3 oy
00200 °0 = deds pau uly
01 = oy Ul swees|]

1§ = swmeste jo o

opoy essensy

51

5. Conclusions

In this report we have developed two regridding techniques,
based on an underlying fixed grid Fo, with a moving grid M.
superimposed aon {t, the motion of the nodes on the moving grid
being governed by a constrained MFE method. In section 4.1 the
method was applied to a moving boundary problem, where it was
found possible to implement an implicit algorithm (section
4.1.5 & 4.1.6) which gave very good results with a vast
decrease in cpu time ovér the corresponding explicit method.
In section 4.2 the method was tested on Burgers' equation, for
a solution where the tracking of a steep front was important,
and here again good results were obtained. Finally in section
4.3 the method was adapted to cope with shock problems, the
Buckley-Leverett results showing that the algorithms were
successful.

Using an underlying fixed grid gives one the added
advantage that if a system of equations is to be solved the
same grid can be used on all the equations. If only one of the
components develops a shock, then the methods can track the
shock and also maintain a fixed grid for use with the other
components. If an MFE method were used the grid would have to
be generated from the equations which contain the shocked
components and the grid may not be suited to the solution of
other equations of the system.

It is hoped to next apply the algorithms described here to
a system of equations that model steam injection, where it is

important to track the boundary between the steam and the

52

water (which may be in the form of a steep front or shock) and
also maintain a fine grid in certain areas of the solution
domain in order to capture particular physical effects (i.e.
pressure drop at the well bore). Finally it is hoped in the

future to extend the methods mentioned in this report into

2-d L]

53

Acknowledgements

It is with pleasure that [acknowledge the help and
encouragement given to me by Dr. M. J. Baines throughout this
work. [would also like to thank R. 0. Moody for several very
interesting discussions, and Dr C. P. Please for some useful
suggestions concerning this work.

Finally | wish to thank M. H. Goldwater at BP Petroleum
Development, for his ideas and interest over the last two
years.

I acknowledge the support of the S.E.R.C. through a CASE

studentship with BP.

54

Appendix

We show here that if an implicit time-stepping method is
used to track a moving boundary, then after n time steps the

numerical value obtained will overestimate the true location.

Using the moving boundary problem of section 4.1.4, where

the true boundary velocity 1is given by equation (4.6)

s(t) = soet’/? (4.86)

the speed is estimated from equation (4.3), which can be

written as

KL ug - kpug
s(t) = ; (A.1)
4(k. - kg2

the exact solution being given by equation (4.6), namely

ulx,t) = x2 - golet (4.6)

u, 2x x € [a,bl

If we assume that the numerical solution correctly estimates
the slope either side the boundary then from equation (A.1) we
can write the speed of the boundary, noting that the slope at

the boundary 1is 2s, as

55

s(t) = s(t) (A.2)

If we approximate s(t) with

gn*t = gnet - gn = gne+t (A.3)
dt 2
sn-ol = gn (A.4)
(1 - dt/2)

then it can also be shown for the exact solution (4.6) that

gl = gnegdts2 (A.5)

and, since

(1L - x)=t > e 1 > x (A.8)

3%
o

it can be seen that for dt < 2 the numerical estimation of

the boundary position (A.4) is greater than the exact

position.

56

(11

(21

(31

(41

£51

(61

(71

[81

(91

(101

(111

(121

(131

References

WATHEN, A.J. & BAINES, M.J. (1985), IMA J. Numer.
Anal. 5, 161-82.

MOODY, R.O0. (1985), Numer. Anal. Report 17/85, Dept.
of Maths., Univ. of Reading.

MOODY, R.0. (1987), Numer. Anal. Report 10/87, Dept.
of Maths., Univ. of Reading.

WATHEN, A.J. (1984), Ph.D. Thesis, Univ. of Reading.

MILLER, K. & MILLER, R. (1981), SIAM J. Numer. Anal.
18(6). 1019-1057.

LYNCH, D.R. (1982), J. Comput. Phys. 47, 387-411.

MUELLER, A. (1983), Ph.D. Thesis, Univ. of Texas at
Austin.

COUCH, E.J. KELLER, E.J. WATTS, & J.W. (1970), J. Can.
Pet. Tech. April-June 1970, 107-111.

CIAVALDINI, F.L. (1970), Int. Chem. Engng. 10(1),
42-8,

HEATH, D.E. (1986), Numer. Anal. Report 17/86, Dept.
of Maths., Univ. of Reading.

JOHNSON, I.W. (1986), Ph.D. Thesis, Univ. of Reading.

WATHEN, A.J. (1982), Numer. Anal. Report 4/82, Dept.
of Maths., Univ. of Reading.

GELINAS, R.J. D0OSS, S.K. & MILLER, K. (19881),
J. Comput. Phys. 40, 202-249,

