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Abstract:

The solution of the linear matrix equations

(i) AXB + CYD = E and (ii) (AXB,FXG) = {E,H)

are considered. New necessary and sufficient
conditions for the consistency of the eguations

are derived, some using the generalized singular
value decomposition. Special cases (iii) AX + YD = E
and (iv) AXB = E are treated using the singular

value decomposition. Numerical algorithms for the

solutions are also suggested.
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1. Introduction.

Let Rmxn dencte the space of real m x n matrices.

We consider the solution of the linear matrix equations

AXB + CYD = E (1

MT and D € R®*"

with A€ R"P , Be V", cer
and

AXB = E , (2a)

FXG = H , (2b)
with F € R"P and c € r9*"

We also consider the special cases

AX + YD (3)

1
m

and

AXB = E (4)

of equations (1) and (2) respectively.
For equation (3), the necessary and sufficient conditions for

its consistency have been derived in [1] [9] (and some references

therein). For inconsistent equations, kp and Chebyshev solutions
can be considered [11] [12]. For equation (4), the consistency
conditions were given by Penrose (see [7]1). If equation (3) or (4)

is consistent, a solution can be obtained using generalized inverses
(GI) (11 ([71. In sections 4 and 5, the singular value decomposition
(SVD) [4] will be used to investigate equations (3) and (4), and a

simple and clear exposition, in terms of consistency conditions,



analytic and numerical solutions, and &.,-solutions, will be given.

2
For the general cases in (1) and (2), consistency conditions were
given in [2] and [B] respectively, and solutions were again given in
terms of GI . Simpler conditions for consistency of eguations (1)
and {2) can be obtained, through the use of the generalized singular
value decomposition (GSVD) ([4]1 [8] [10] and references therein),
and stable numerical algorithms for their solutions, arise naturally;
the results will be contained in sections 3 and 6 respectively.
Many authors were not aware of the fact that equations (1) and
(2) are dual in some sense. The duality is discussed in section 7.
The paper is completed with a brief introduction to SVD and

GSVD in section 2, and a conclusion in section 8.

Note that an excellent thesis on the general equation

N
Y A X.B,, = C,, i=1,...,M;
=1 1373743 i

can be found in [5]. Questions of consistency, near-consistency (an
equation was defined to be e-consistent iff the residual is less
than € ), and applications to output feedback pole assignment problems
in control theory, were considered. Some results in sections 3 and 6
have been obtained (in less elegant forms) in [5], as GSVD have been
used unknowingly.

Other linear matrix equations have been considered by the author

in {3] and some more results will appear in future papers.



2. SVD and GSVD. [4] [8] [10]
. . mxn
Given a matrix A € R of rank k , one has
A = uov' (5)

where U = [U1,U2] and V = (V1,V2] are orthogonal matrices, with

) o

D = (6]

and ) = diag[oq,...,okl . 0,>0

Itlis easy to see that the matrices U,l i V1 , V2 and U2 span
the range and null spaces of A and AT respectively. Other
properties of SVD can be found in standard texts such as [4], and
references therein.

The GSVD, a generalization of SVD, can be described as follows:- (8l

Given two matrices A € Iﬁ“xn, B €:Rpxn with equal number of
columns, there exists orthogonal matrices U and V , and non-singular

X so that

A= ULX., B = V]IX; (7)

where EA e R™", ZB € R°*", and k = rank (C) = rank [g] , with

ZA = S é 0 (8a)



lg " Sq b0 | s (8b)

=

r s k-r-s n-k

IA and IB are identity matrices, UA and DB zero matrices, and

SA - diag(aq,...,asl ; (9a)
SB = diag(Bq,...,BSJ i (8b)
with 1 > o, 2 e we) 2 o >0, 0 < 81 S ... & BS <1,
and a2 + g2 = 1, 1i=1, »S

Some submatrices in equation (8) can vanish, depending on the
structures of matrices A and B .

Proofs and properties concerning the GSVD can be found in [4] [8]
{10] and references therein.

In situations where the matrix X in equation (7) has to be
inverted, (e.g. in sections 3 and 6), ill-conditioning may occur, as

the matrix X is not orthogonal. In [8], the matrix can be expressed as

X =8 (10)

where the matrices @ and W are orthogonal, and

A R O T
C = = P Q » [11]
B 0 0
with the matrix P being orthogonal. (It can be the SVD in equation (11).)

Thus, the matrix X will be ill-conditioned if the smallest non-zero
singular value of C is small, i.e. when the (numerical) rank determination

of the matrix C 1s not straightforward.



A stable numerical algorithm for the computation of the GSVD

by Stewart can be found in [10].



3. AXB + CYD = E .
, . . T _T .
Decomposing the matrix-pairs (A ,C ) and (B,D0) using GSVD,

equation (1) is equivalent to

TeT, T TeT, T > _
X1ZAU1'X'UZZBX2 * X doVytYeVoloX, = E (12)
where the matrices Ui and Vi are orthogonal, and Xi are non-singular,

as in equations (7) to (9).

. . T . T i -T
Define X = U,|XU2 , Y =V YV2 and E = X1

-1
1 EX2 ,

equation (12) now reads

LxIg ¢ SVE, = E (13)
Note that transforming equation (12) to (13) does not change the
equation’s consistency.
Partitioning matrices X,Y and E according to that of the Z's s

equation (13) is equivalent to

I, I5 :
1
SA X SB : 0
T :
Oa O !
................ | : )
L Q )
i T 3
DC OD :
- : B ~
+ SC Y SD | 0 = E
I IDE
o]

(c.f. equation (8))



X4 X455 0 0
SpX21  SaX2298™S¢Y22%p  ScY¥as O = [E
: Y325 Va3 0
0 0 0 0

m m ¢
m m
M M

mt
M ¢

The following theorem is a consequence of equation (14):

Theorem 1.

Equation (1) is consistent if and only if the following

submatrices of E vanish:-

E.qy w E,, # E , mE

Ei3 » B3q + B4

For consistent equations, the submatrices

~ ~ ~ ~ ~

Y i Y21 ., Y

~ - ~ ~

X X X X X 3 Y Y

13 * 723 7 733 * 732 7 "N 13 12 7 11 31 %

of X and Y respectively are arbitrary, and additional
degrees of freedom can be found in
X22 = [xij] and Y22 = (yij]
Elementwise, one has
X
ij 0 =
= M

?

Te.. + (I-MI .M, .)Z.. (15a)
1J 1] 13 13 13

<

1]

where S diag(ai] , S_ = diag[Bi] , S_. = diag[yi) ;

B C

diag($.) , and é = (e..) ;
i 1

w
I

D
+ 1]

Mij = (aiBj , yidj] , () denoting the

(1,2,3,4). - or Penrose - GI [7], and the

vectors Zij are arbitrary.



(Proof):

~

~

Or consider Y22 to be arbitrary, X22 must then be
chosen to be
X = 5 ME._-S Y, S.)5" (15b)
22 A 22 C 22D°B
(Or consider X22 to be arbitrary and choaose Y22

similar to equation (15b) accordingly.)

The consistency conditions, the arbitrariness of the

submatrices and equation (15b) are trivial from

equation (14).

~

For X22
component ;..
1]
(% .
UTH I IS

and thus eguation (15a).

of GSVD and equation (8), the row vectors

non-zero and right-invertible.

and Y22 , consider the (i,j) -

and gij , and equation (14) implies

Note that, from the definitionm

M, .
ij

are

Using Theorem 1 and equation (15b), one characterization of the

solution of a consistent equation (1) will be

and

~ - 1
E11 €258
u. | sTTE sV _-s 755"
1| °a 21 A ‘F227°c%1°0’°g
B, Z,

22

=
z, | u,
Zq




_']O_

27 ZB Zg
B = T
Y= Vel 4o Z4 5S¢ Baz | Vo
Z g ter! E
L M 327D 33 )
where the matrices 21 to Z11 are arbitrary.

Equation (14) leads naturally to a numerical algorithm for the solution
of a consistent eguation (1). The process will then be numerically
unstable (and equation (1) numerically ill-conditioned) if any of the
generalized singular values (GSV) oy s Bi s Yy and Gi is small,

or the matrix X1 ar X2 ill-conditiaoned. (c.f. discussion after
equation (11).) Small GSV may have to be reset to zero, with the

resulted errors treated as residuals of equation (1).

The transformations by unitary matrices of X and Y back to the

solution X and Y will be well-conditioned (4].

By choosing various arbitrary matrices (ignoring
equation (15b)) to be zero, a solution of least 2- or F-norm
may be obtained, but the residual of an inconsistent equation (1) will
not be of least norm, as X1 and X2 in equations (12) and (13) are

not orthogonal.



_']']_

4. AX + YO = E .

For the special case (3) of equation (1), it is not necessary
to use GSVD for the solutiaon. (The GSVD of (A,I) degenerates into

the sVD of A .)

Decomposing the matrices A and D by SVD, equation (3) is

eguivalent to

T T
UDVReX + YeU DVl = E
- DX + YO, - E (16)
with X = VX, Y = YU. and E = UEV
Ak D AVp

Note that all the transformations involved in equation (16) are

orthogonal.

Partitioning equation (16), according to that of D, and DD ,

A
yields
b O koo )
X +Y = E
0 0 0 0
Al La¥az 1 12
- ‘ = - - (17)
Yorlp 0 E21 =)
From equation (17) one has the following theorem:
Theorem 2. Equation (3) is consistent if and only if
E - UT EV = 0 (18)
22 A2~ D2 g
with UA = [UA1 5 UAZ) and VD = (VD1 . VDZ]
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For a consistent equation (3), the submatrices X21 ,» X

Y12 A Y22 of X and Y are arbitrary, and additional

degrees of freedom can be found in

x11

= (xij) and Y11 = [yijJ

Elementwise, one has

= Mie.. ¢ (I-M .M. )2
13 17

ij 1ij ij

where ] = diagla,) , lp = diag(s,) , E = [éijJ i

M,., = (a,,8.) and Z,, are arhitrary.
ij i’7i ij

~

Or consider Y11 to be arbitrary and X11 has to be

chosen to be
. et n .
X9 = Lp (Eqq= Yo lp)

If condition (18) is satisfied, the solution of equation

(3) may be written as

X =V
A
< Z3
2—1
) AT T
= Va Upq (E-UpZ4dpVpsdVp + Vap(Z5023)
0
and
£ 24 2, Zq
v o= ul - ul
g D T o, -1 D’
Exlp 75 UpnoBVpelp s

where the matrices 7 to Z5 are arbitrary.

{1%a)

(19b)

(20a)

(20b)



Condition (18) and equation (20) are equivalent to those given in

equations (2) to (4) in [1), without any explicit use of GI.

Again, eqguation (17) leads naturally to a numerical algorithm
for the solution of equation (3) - if it is consistent. For
inconsistent systems, a least square type solution can also be found

from equations (17) and (18a), as all the transformations involved are

orthogonal. The size of the residual will be the same as that of E22

The algorithm will be numerically unstable when any of the SV ay
and 6i is small. Again, small SV can be reset to zero and the

resulted errors treated as residuals of equation (3).

The SVD used to transform equation (3) to (17) can be replaced
by the less expensive QR decompositions [4], if the rank determinations
of the matrices AT and D are straightforward, and equation (3)

is then equivalent to

|
m

T.T
RaQaX + YOuRg

T ~
= RAX + YRD = E , (21)

where X = Q;X , Y =YQ with the matrices @, and QD being

D’ A

orthogonal, and RA and RD being upper triangular or trapezoidal.
An equivalent theory of consistency can be derived from equation
(21), instead of (17]. A numerical algorithm for the solution of

equation (3) can then be derived, by considering the individual

component of (21) in a row-wise or column-wise fashion.
Note also that special cases of equation (1), e.g.
AXB + Y = E , (22)

can be treated using SVD in a similar fashion as in this section.
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S, AXB = E
It is obvious that consistency for equations (2a) and (2b),
(both in the form of equation (4)) is necessary for the consistency of

equation (2).

To study the consistency of equation (4), we decompose the

matrices A and B by SVD:

T T
UADAVA-X-UBDBVB = E
zA . " ZB . 11 12 "
- X s = E ,
0 0 0 0 E21 59
where i = VTXU and é - UTEV
A" B AT B

Equation (23} gives rise to the following theorem:

Theorem 3. Equation (4) is consistent if and only if

e T _ T
(Byq:Bppp % U E = D
and
B2
Uyl - = EVg, =0,
22

where UA = (UA1‘UA2] and VB = [VB1‘VBZ]
The solution of equation (4), if condition (24) is

satisfied, can be expressed as

Y
Ln E1alg 29 | 1

(23)

(24a)

(24b)

(25)
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with the matrices 21,22 and 23 being arbitrary.
Condition (24) is equivalent to those derived in [2] [5] for the

consistency of equation (4).

It is easy to see that the least-squares solution of equation (4)
is possible from equation (23} or (25), as the transformations in
equation (23) are all orthogonal. The choice of Zi = 0 1in equation (25)
will provide a minimum norm solution, X , and the residual of an

inconsistent equation will be

2

The solution process in equation (23) or (25) will be numerically
unstable if any SV of the matrix A or B is small. Again, it may
be necessary to reset small SV to zero and transfer the resulting

errors to the RHS of equation (3) to be treated as residuals.

Similar to equation (21), the QR decomposition (or even the
Gaussian elimination process with suitable pivoting) can be applied to
solve equation (3) - instead of the more expensive SVD in equation (23),

if the rank determinations of matrices A and B are trouble-free.



6. (AXB, FXG) = (E,

Observe in equation (2) that the matrices

_18_

H)

A and F (BT and GT]

have the same number of columns, and apply the GSVD to the respective

matrix-pairs. Equation (2) is then eguivalent to:
TeT, T
U1ZAx13x»x225u2 i (26a)
TeT, T
vtix1-x-x226v2 . (26b)

where the matrices Ui

and Vi are orthogonal, and Xi are non-singular,

as in equations (7) to (9).

Define X = X, XX

1
is equivalent to
I
A
= SA
and
DF
SF

g B =

LaXlg

Iexlg

4

R

?

.

~

5 e

Partitioning the matrices X , E and H

of the Z's » equation (27) leads to:

TEU2 and H = VIHV2 , equation (27)

= E , (27a)

?

= H. (27b)

in accordance with that



Theorem 4. Equation (2} is consistent if and only if:-
(1) Egy » Egy » Egg s By s Eq = 0 (28a)
(1) Hyg o Hyp o Hoy s Hyo o Hyy = 0 (28b)
CEED N S-S (29)

The solution of equation (2) can be expressed as

T
X = XD XK (30)
where
f o . _/l H
1 E1258 Z Z,
1= 1=
N Sa Eoq A Sg Hyg 73
X - - ) (31)
Zy HypSg  Hag Zs
L % Z; g Zg |

with the matrices Z1 to Zg being arbitrary.

(Proof): Conditions (28a) and (28b) are the consistency conditions
of the individual equations in (27a) and (27b)
respectively. (They are similar to condition (24) in
Theorem 3.)

Condition (29) is the result of matching the solutions

of the equations involving X22 in equation (27}.

Equation (31) is a trivial consequence from (27).

The algorithm for the solution of equation (2), (suggested by
equation (27) or (31)) will be numerically unstable if any of the GSV is
small, or if the matrix X1 or X2 is ill-conditioned. (Recall

the discussion on conditions of these matrices after equation (11).)



From equation (26), the solution in (31) minimizes the 2- or
F-norm of the residual of an inconsistent equation (2), but will not

provide a minimum norm solution X , as X1 and X2 are not orthogonal.

Note that special cases of equation (2), e.g.

AX

XG

can be similarly treated using SVD.
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7. Buality.

It is not widely appreciated, but can be easily proved, that the

adjoint equation of (1) is in the form of (2), and vice versa.

Starting from equation (1) and using the Kronecker product, one
has
AXB + CYD = E

T
- [A@B,C®D”-v[$J = v(E) , (32)

where the column vector v(M) is formed by lining up successive rows

of the matrix M and transposing.

Consider the adjoint equation of equation (32), one has

vz - a®e’, c®o’) - vz’
AT®B T
— T -v(Z1] = v[22]
C' ®D
T T, T T
i ZylE =l T
CTZTDT = ZT , where ZT = T 3
1 22 2 Z
22
- BZ,A 5 Z,, (33)
Dz,c = 7

From equations (32) and (33), one can derive the following
conditions for consistency of equations (1) and (2}, using the duality
property:

Theorem 5. Equation (1) is econsistent if and only if:-
BZA = 0 and DZC = 0 = trace (EZ) = O

Equation (2] is consistent if and only if:-

BZ1A + GZZF = 0 = trace [EZ1+H22] = 0



(Proof):

- 20 -

From equations (32) and (33), (1) is consistent iff

BZA = 0, DZC =0 = V(ZT]T'V(E) = 0
and V(ZTJT-V(E] = trace (EZ)

Similarly, starting from equation (2), the second part

of the theorem may be proved.

Obviously, Theorem 5 holds for special cases of equations (1) and

(2) (e.g. (3) and (4)) in their respective simplified forms.



8. Conclusions.

In this paper, we apply GSVD to investigate the sclution of the

linear matrix equations (1) and (2). Special cases in (3) and (4)
are treated using SVD. Consistency conditions are derived and
solutions for consistent equations are characterized. Possihilities

of solving the equations in the least squares sense have also been
discussed when appropriate. Additional conditions for the
consistency of the equations are then derived, using the duality of

equations of the form (1) and (2).

Although the paper is essentially a theoretical one, numerical
algorithms for the solution of the equations are suggested and
numerical considerations have always been kept in mind. More work -

expecially numerical experimentations - have to be done.

Finally, the potentially very powerful tool, the GSVD, has been
around for nearly ten years but applications have been surprisingly
limited, compared to that of the SVD. This paper represents a

moderate attempt to redress the situation.
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