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0 Abstract

The Lagrange-Galerkin method has proved a very successful method but there
are problems with monotonicity and conservation. In this paper we address these
two issues and propose an algorithm that allows no new extrema to be generated
by the scheme. It is equally applicable to multi-dimensions, and also prevents
any systematic error in conserved quantities. Furthermore this is achieved at very
little additional cost and without compromising the unconditional stability of the

method.



1 Introduction

The Lagrange-Galerkin method is a scheme that combines the method of charac-
teristics with a standard finite element procedure, see Benqué et al 1982, Bercovier
& Pironneau 1982, Douglas & Russell 1982, Lesaint 1977, Pironneau 1982 and
Russell 1980 for example. There are two versions of the scheme available de-
pending upon whether one travels forwards in time along the particle trajectory
or backwards. In Morton & Priestley 1986 these two schemes were labelled the

weak Lagrange-Galerkin method and the direct Lagrange-Galerkin method.

We shall briefly describe the derivation of the schemes and in the
following section discuss the basic properties of the scheme, both good and bad. In
Section 3 an algorithm is introduced that removes oscillations from the Lagrange-
Galerkin method, one of its major drawbacks. To demonstrate its effectiveness a

simple test problem is solved in Section 4, to be followed by a brief summary.

Consider the Cauchy problem for the scalar, linear advection equa-

tion for u(z,1t):

us + a.Vu =0, zeRY t>0, (1)

u(§70) = UO(Q)) (2)

where uy belongs to L2(IRY), d being the number of dimensions. The velocity

field a(z,t) is assumed to be incompressible, i.e.



V.a=0 Vz,t. (3)

We can now define characteristics paths or trajectories, X(z, s;t), in two ways,

either as the solution to an ordinary differential equation,

X(z,88) = z, (4)
dX(z,s;t)
— o = aX(zsit)t) (5)

or, if desired, as the solution of the integral equation

X(z,s;t) —a,—l—/ X(z,s;7),7)dr.

In order to simplify the notation, for "+ = t™ 4+ At, we will denote
the foot of the characteristic path at time t" to be at z and its arrival point at

time t"*! to be at y. In terms of the more general notation, these are
z = X(yt"ht")
and

y = X(z, ™™,

A unique (absolutely continuous) solution to equations (4,5) can be
guaranteed if it is assumed that @ belongs to the Bochner space L'(0, T'; (W"*)%),
see Mizohata 1972 for example. The solution to the original partial differential

equation (1,2) is now given by the relation

w(X (-t + )t +7) = ul-, 1), (6)
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The direct Lagrange-Galerkin method uses (6) directly to obtain a
solution. For an approximation, U™, at time ™ given in terms of finite element

basis functions ¢;,

Un) = U, (7
;
the direct Lagrange-Galerkin method uses eq. (6) to obtain U"*! in L*(IRY) sat-

isfying

) = [Ur@epdy Vi, ®)

equation (8) being obtained by taking the weak form of (6), i.c., multiplying (6)
by ¢i(y) and integrating over the whole domain with respect to y, and the L2
inner product over IR? being denoted by (-,-). This is the same approach as that
used by Bercovier & Pironneau 1982, Douglas & Russell 1982 and Pironneau

1982, for example.

A second, alternative, formulation has been proposed by Benqué et
al 1982 and this will be referred to as the weak formulation or the weak Lagrange-
Galerkin method because the adjoint of the differential operator in eq. (1) is ap-
plied to a test function. This method introduces new test functions (-, ), which
now are not only different from the basis functions used in the expansion of the
solution as in eq. (7), but also depend on time. Multiplying equation (1) by this

test function and integrating in space and time we get

t+At
/ (ug + a.Vu,¢)dt =0 Vi,
¢
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Integrating by parts, with respect to space and time, we obtain

(Ut + A0, £+ D) = (a0, 0) = [ T4 V. (ah))d Vi (9)

Using the incompressibility condition, eq. (3), V.(a;) can be rewritten as a.Vi);

so that this last term vanishes, because the integrand is zero, if the test functions

satisfy

bi( X4t + 1)t + 1) =%(t) Ve (10)

To solve (10) a final condition on ; is imposed by setting

Yi(,t + At) = (). (11)
Substituting our finite element approximation (7) into (9) together with (10) and

(11) gives

(U™, ¢,) = /U" Vi, ")z Vi,

or equivalently,

U4 = [U@diy)de Vi (12)

If J is the Jacobi matrix of the transformation defined by the map-

ping X (-,t";¢"*!), then we have, as shown in Chorin & Marsden 1984,



where |J| is the determinant of J. For V.a = 0 this means that

|J| = constant = 1, (13)

which in turn implies that dz = dy and so (8) and (12) give the same scheme

when exact integration is used.

It is worth noting that when V.a # 0, i.e. (13) no longer holds and
the value of |J| changes then the direct and weak formulations are not the same.
With z and y still related as before, the direct Lagrange-Galerkin method still
approximates equation (1). However, the weak Lagrange-Galerkin method now

approximates the equation

us + V.(au) = 0. (14)

If it is desired to use the weak method for equation (1) or the direct method for
equation (14) in the situation V.a # 0 then a term uV.a will need to be added

or subtracted on the right-hand side of the equations.

2 Some Basic Properties of the Schemes

This paper is not intended to be a review of theoretical results concerning the
Lagrange-Galerkin method but some of the results are worth recapping and there

are others we shall use later.



Assuming that finite elements are being used for which 3=, ¢; =1
then for either formulation conservation follows immediately. One simply sums
equation (8) or (12) over all ¢ to obtain, in the case of the weak Lagrange-Galerkin

method

/U"+'(£)d£= /U"(z)dz
which is just an obvious statement of conservation. For the conservation of the

direct method it is also necessary to use eq. (13) to transform the region of inte-

gration.

Suppose now that we denote by FEa:(t) the solution operator
u(-,t + At) = Eay(t)u(-, 1), and similarly E5; (£)u(-,t + At) = u(:,t), for equation

(1) over the time-step At; that is from (6)

Ene(Du(-,t) = u(,t + At) = w(X(-,t + At; 1), 1). (15)

Letting || - || denote the usual L? norm over IR% and || - || be the correspondingly

defined operator norm, we have

| Bac®)ul- ) Il _ [ ult+ A |
[0 | uro  luC )

and from (15) and (13) this equals 1. Hence

I Ea(t) |lo= sup
u#0

I Ese(t) l=1=[l Bz (2) llx - (16)



The unconditional stability of both the direct and weak methods now follows.

For the direct method we can write

(U™, i) = (Bac(t)U™, ).

Multiplying by UM and summing over ¢ gives

U™ = (U™ Ea(t"), U™)

< N EBat)U™ || UM

Hence

[RZ%asn bRz p

Similarly for the weak method, we can write

(U™, ¢i) = (U™, By (7))

Using (16) and the Cauchy-Schwarz inequality, we have,

[RZaa (19 R 74 P

to again deduce unconditional stability.

THEOREM 1 The direct Lagrange-Galerkin method with C° finite elements of
degree k (k > 1) converges with order k in the [°°(0,T; (L?)?) norm, provided that
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up € (H*1)4, a € L0, T; (Wh>)%) and the corresponding solution u of (1)

belongs to the space H(0,T; (H*1)4).

Proof See Morton et al 1988.

Also in Morton et al 1988 it is mentioned that there are certain spe-
cial cases where this result can be improved upon. For one-dimensional constant
linear advection the Lagrange-Galerkin method with piecewise linear elements on
a uniform grid becomes third order accurate. When a is a smooth function the

method is second order accurate in the [°°(0,T'; I?) norm on a non-uniform mesh.

Other theoretical results can be found in Lesaint 1977, Suli 1988a

and Sili & Ware 1991,

Although Lesaint 1977 gave theoretical results involving quadra-
ture, little work had been done on this aspect of the method. Except in the
simplest of problems, quadrature formulae will have to be used to evaluate the
right-hand sides of the methods (8) or (12). In Morton & Priestley 1986 some
elementary results were given regarding the effects of quadrature. If the basis
functions #(-) and the quadrature rule are symmetric, then for constant linear
advection the weak and direct Lagrange-Galerkin methods give the same results
even under quadrature. Denoting the abscissae of the quadrature rule by y; and
the corresponding weights by wy and replacing the integrals by sums over the
elements and sums over the quadrature points, the coefficient of U in the right-

hand side of the direct method is proportional to



Z;wwwwe—i)qﬁ(yﬁe—j —v); (17)

the corresponding sum for the weak method is

S wpd(yw + €' — i+ v)plyw +e' —J)

e Kk
= Y > wpd(—yp — €+ J)(~yp — € +1—v). (18)
e K

These two expressions, (17) and (18), are the same if y;, = 1 -y, e’ =i+j—e—1.
We would expect this result to be true for constant linear advection. The more
interesting aspect of the proof is that the result is clearly not going to hold for
equations more complicated than constant coefficient linear advection. However,

this simple result will be useful later.

Another straightforward result regarding quadrature is in the ex-
tension to multi-dimensional constant advection with a velocity field (a,b,c).
Consider the three-dimensional basis function ¢; ; x(z) formed by taking the prod-
uct of three one-dimensional basis functions, i.e., @i x(z) = ¢i(z)d;(y)dr(2). If
we now assume that our quadrature rule is also of this form, that is made up of
a product of the usual one-dimensional rules with the weights given by w; ;) =
w;w;wy, and the abscissae given by z; ;. = (i, ¥5, zx) then the three-dimensional
direct (or weak) Lagrange-Galerkin methods are equivalent to the product of
three one-dimensional methods. To demonstrate this we recall the right-hand

side of the direct Lagrange-Galerkin method is given by [U"(z)¢i(y)dy. Under
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quadrature this is replaced by the summation

elements abscissae

)2 > wU(a(y,)ey,),

e=1 =1
where the notation, z(y,), denotes X(y,,t"*";t") in the more rigorous notation
used previously. Substituting in for U™ from (7) and expanding the sums into

their various component directions we get

z nodes y nodes z nodes

ZZZZZ;WU’J’M ; Z=:1 ;::1

ez €y €z 1 7

U ai(@ — A b(y — bAL)Ga(z — cAL).

It is then easy to see that this can be rearranged to give

ex €y

(Z > wi m TZ_; ¢i(z — aAt)) (Z > w; y nz_:l Pm(y — bAt))

z nodes
(Z > wy > ¢z — cAt)) Ulnm
k n=1

€z

and hence the result. This result also holds for the more general case of (a, b, c) =

(a(a), b(y), o(2))-

The next results concern the conservation of the schemes when ap-
proximate integration is used. Using quadrature, the right-hand side of the weak

method, (12), becomes

Z ZwkUn(Qk)@(Q(ik)) Vi, (19)

elements k

11



Similarly, the direct method, (8), becomes

> LwlUMaly)eily,) (20)

elements k

the roles of z and y having been reversed because the two methods are integrated
over different variables, see (12) and (8). Just as in the exactly integrated case a
summation over 7 is now performed. Since Y; ¢;(-) = 1 irrespective of the argu-
ment, or the functional form of the argument as in the case of eq. (19), the two

approximate integrals expressing the conservation of the quantity U become

S Ywlr(z,) ey

elements k

and

> 2 wUMz(y,)- (22)

elements k
Assuming that our quadrature can integrate polynomials of at least the degree
of our elements exactly then it is clear that eq. (21) is an exact representation of
fU™(z)dz, and hence the weak Lagrange-Galerkin method is conservative even
when quadrature is used. On the other hand equation (22) is not an equivalent
expression to [ U™(z)dz because the points where the function, U™, is to be eval-
uated are not at the quadrature points but at some function of them. Therefore
this integral will not in general conserve U. The only case where we can guaran-
tee conservation with the direct Lagrange-Galerkin method is in the trivial case

mentioned before, where the two schemes become identical.

It is worth noting that the weak method is conservative irrespective

12



of the velocity field or how badly we approximate the trajectories. Conservation,
in practice, is also dependent on inverting the mass matrix exactly. Usually an
iterative method is used to achieve this and it is unlikely that the inversion will be
completed to convergence. As a result, in practice neither scheme will conserve
exactly. Results were given in Morton et al 1988 that showed that this was the
case although the weak Lagrange-Galerkin method performed consistently better

than the direct method on the basis of this measure.

Possibly the most interesting result regarding the effects of quadra-
ture was given by Priestley 1986 and Morton et al 1988, which was later extended
to include diffusion by Siili 1988b. This was achieved by a simple Fourier analy-
sis of the constant coefficient advection equation. (As mentioned previously both
methods are identical for this problem under mild restrictions on the quadrature

used.) The result is stated here as

THEOREM 2 If the right-hand side of the Lagrange-Galerkin method, using
piecewise linear elements on a uniform mesh, is approzimated by a quadrature of

the form

/01 f(z)dz ~ wof(0) + iwkf(iﬂk) + W (1),

where the weights wy, ..., Wny1 and the quadrature points 0 <z < ... < Ty <1
are free to be chosen except that we assume that the quadrature evaluates the
integrals of quadratic polynomials exactly, then the method is unstable for CFL
numbers v € (2wpt1, 1 — &) if
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2Wpy1 < 1=z, (23)

Proof Priestley 1986 or Morton et al 1988, where similar results were also

proved about the lower order quadratures.

The consequences of this theorem are quite wide ranging. Gauss-
Legendre quadrature (often just called Gauss quadrature) is immediately seen
to be unconditionally unstable because wmt1 = 0. This means that the re-
gion of CFL numbers for which instability occurs is given by (0,1 — z,,) and
hence we cannot reduce the time-step, as with other methods, to ensure sta-
bility. Newton-Cotes formulae were also shown to fail the criterion of eq. (23)
as were various Radau formulae. Gauss-Lobatto quadrature formulae, of which
vertex and Simpson’s rule are the lowest order versions, was found also to fail
(23), although this Gaussian quadrature did at least have a region of stability
given by [0,2/(m + 1)(m + 2)]. Even though this is one of the best quadratures,
with Simpson’s rule, m = 1, the region of stability is only [0,1/3], a considerable

restriction compared with unconditional stability.

Up to a point these results were largely academic in that with the
higher order quadratures, although the region of stability may actually decrease,
it can be very hard to make them show signs of this instability because of the
accuracy of the scheme. In calculations involving the Navier-Stokes equations,

where there is some diffusion, it becomes even more difficult. Using bilinear ele-
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ments on rectangles for the rotating cone problem Morton et al 1988 were unable
to make a 4x4 Gauss-Legendre quadrature go unstable, although in Priestley
1986, in a one-dimensional example where it was then possible to keep the CFL
number in the unstable range, it did eventually become unstable. The danger
then, in practical calculations with the Navier-Stokes equations for example, is
that near boundaries or around stagnation points the scheme will be exposed to
fairly constant CFL numbers in the unstable region. Once the unstable modes
in the solution have been excited they can then grow very quickly even with the

more accurate integration schemes.

To overcome these problems Priestley 1986, Morton et al 1988 intro-
duced the area-weighted Lagrange-Galerkin method which, in contrast to normal
quadrature, approximated the velocity field in such a way that the integrals could
then be carried out exactly. This was proved to be stable and to converge and
was shown to give reasonable results. However, there was a loss of accuracy over
the exactly integrated method and the high order quadrature methods. It was

also only really practicable on rectangular grids.

There are two other stable ways of implementing the method but

both have their drawbacks.

The EPIC algorithm of Eastwood, see Eastwood & Arter 1986 for
example, is essentially the direct Lagrange-Galerkin method. It overcomes the

conditions of Theorem (2) by using a quadrature that does not integrate quadrat-
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ics exactly. This is done by using a compound trapezium rule. This same rule
(or one with fewer sub-intervals) must also be used to calculate the integrals that
give the elements of the mass matrix. Since the Lagrange-Galerkin method loses
accuracy rapidly if the full mass matrix is not used, this means that quite a few
sub-intervals need to be taken. This could then become very expensive in higher
dimensions if a product rule is used. There is also no obvious extension to trian-

gular elements.

The second way is to use global finite elements, which leads to the
Spectral Lagrange-Galerkin method of Siili & Ware 1991. In this paper conver-
gence and stability was proven for Fourier, Legendre and Chebyshev polynomials
even under quadrature, as long as the quadrature used was the relevant Gaussian
quadrature. The only results for general orthonormal polynomials are given by
Priestley 1989a but here only the weaker time-stability was proven. The problems
with this method are its cost, its propensity to oscillate and, in common with spec-
tral methods in general, the difficulty in applying it to arbitrary domains. The
cost of a time-step, in one-dimension, of the ordinary Fourier spectral method
is O(nlogn), where n is the number of modes used whereas the basic Fourier
Spectral Lagrange-Galerkin method has a prohibitive cost of O ((nlogn)?). Sili
& Ware 1991, with no loss of accuracy, used a reduced spectral interpolation to
reduce the cost to O(k(n)nlogn) where k(n) — logn for large n. Boyd 1991a
has used sum acceleration techniques for the interpolation and reduces the cost
by a factor of two for large n, Boyd 1991b. The cost for practicable n is much

the same for both approaches. Sum acceleration could, in principle, be applied to
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a much wider range of polynomials than the reduced spectral interpolation. Sili
& Ware 1991 used only Fourier polynomials although the method is equally ap-
plicable to all trigonometric polynomials, including Chebyshev polynomials, but
not to series like Legendre polynomials, Ware 1991. Priestley 1989b suggested a
non-interpolatory version, based on a similar idea due to Ritchie 1986 for a finite
difference Lagrangian scheme, that would reduce the cost back to O(nlogn). The
problem of the Gibb’s phenomenon and oscillations occurring between quadra-
ture points has yet to be solved, Siili 1989, although they do appear to be of
lower magnitude than occurs with the more usual spectral methods. Monotone
spectral methods are under development, see Cai et al 1989, 1991 and Cai & Shu
1991, and some of these filtering techniques may, one day, be applicable to the

Spectral Lagrange-Galerkin method.

In concluding this section, we can say that although there are alter-
natives it would seem that the most practicable implementation of the Lagrange-
Galerkin method is to use a standard integration formula and to hope that insta-
bilities don’t arise. In the next section we introduce a method that takes away

the need to hope at very little extra cost and with considerable benefits.

3 Construction of a ‘Monotone’ Scheme

The scheme we develop here introduces no new extrema and hence maintains
monotonicity in one-dimension. It is also applicable to multi-dimensional prob-

lems. Monotonicity is a one-dimensional concept but we use the word monotone to
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describe the scheme since its meaning for multi-dimensional problems is generally
understood. Along with monotonicity, conservation is regarded as an important
property of a scheme, and indeed many schemes boast both of these properties,
see Sweby 1984 for a discussion of the Total Variation Diminishing schemes, for

example.

At first the weak Lagrange-Galerkin method might seem a good
place to start as this is already conservative (with the reservations about invert-
ing the mass matrix in a consistent fashion). However, it turns out that it is this

very property that prevents the scheme from being monotone.

The monotone scheme is created by combining a high order scheme
with a low order (monotone) scheme and limiting the weighting between the two
schemes so as to achieve a monotone solution. See Lohner et al 1987 for a sim-
ilar example of this idea. Denoting the high order solution as U and the low

order solution as U we combine these to get a monotone solution, UM, defined by

UM = UF 4+ (1 — oy )UF (24)
with

0<o <1, (25)

where the ay’s are yet to be chosen. If we denote by {U™, k} the set of nodal values
of U™, the monotone solution from the previous time-level, for which ¢;(z(y,)) # 0

then we choose the maximum value of « that satisfies conditions (25) and (26)
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min({U™, k},UF) < axUF 4 (1 — ay)UF < max({U™, k}, UY). (26)

As an example, to illustrate the notation {U™, k}, if we consider one-dimensional
linear elements and the trajectory that starts at y; and assume that this is traced
back such that z; < z(yx) < @41 then {U™, k} is simply just the two values Ul
and Uf,.

We will now refer to the maximum values of o that satisfy con-
straints (25,26) as {af®*}. Now, if the underlying high order scheme is the direct
Lagrange-Galerkin method, the scheme never was conservative and we could just
substitute these values back into (24) and have our monotone scheme. However,
we can now choose sub-optimal a’s to try and make the scheme conservative.

That is we choose o’s such that

0< ap < o™

whilst at the same time trying to enforce

/UM(_:L‘_)CIQZ /Uo(g)dg: C, say.

In general, of course, the best we can do is to minimize the difference between
the two quantities. There are many ways this problem can be solved, by linear
programming for example, but the following algorithm is found to be a very effi-

cient and direct way of obtaining a solution.
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Firstly we define

S; = /¢i(£)d£

and

B; = (U - UM)S.

The problem now is to maximize the o’s subject to

Za, ~URSi=C - ZULS_c*

Assume that

Za;naXﬂi > A=
i

If this is not the case then the definitions are just changed so that

B — =B

cr — -=-C*.

Step 1

if B;<0 then o; =P
iflag(i) = 1
otherwise
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a,-=0

iflag(z) = 0.
Step 2
Define surplus = C* — Z ayfy.
iflag(k)=1
Step 3
Define average value of @ a vy = —w—
Z:iﬂag(k)=o Br
Step 4 if agy < oo Vk st iflag(k) =0
then o = sy Vk s.t. iflag(k) = 0.
END
Step 5 else Vk s.t. iflag(k) = 0 and aqv > o™
put
a = o™
iflag(k) = 1.
Step 6 GOTO 2.

If the surplus is negative then there is no conservative solution and the best so-

lution, as regards conservation, is given by the initial setup of the a’s in step 1.
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A similar algorithm for the weak method is given in Appendix A.

We now explain why the direct method is preferred for the monotone scheme.

Clearly U¥ is going to be the solution generated by the Lagrange-
Galerkin method, see (8) or (12). It remains to determine the lower order, mono-
tone, scheme UL. One obvious way of doing this would be to define U L to be the
solution of the mass lumped problem, i.e. exactly the same problem as for the
higher order scheme but with the mass matrix replaced with the lumped mass
matrix. This involves no extra work as the right-hand sides have already been
calculated for the higher order scheme and the mass lumped solution is a good
starting point for an iterative solution to the problem using the full mass matrix.
This approach of lumping to obtain a lower order solution can clearly be used for
both the weak and the direct Lagrange-Galerkin methods. We now address the

question of monotonicity.

The lumped solution for the weak method using quadrature is given

pEveak) o S S Un ()i (). (27)

elements k

Similarly for the direct method

pHdiret) g S~ S U (a(y,))4ily,). (28)

elements k

From equation (28) we can write

2



direct)

yA Si <max(U) >0 D widi(y,)

elements k

with a similar result holding for the minimum. We now notice that, provided that
our quadrature is again assumed capable of integrating polynomials of degree at

least the same as that of the basis functions, then

> Suwbily) = [ 4@y

elements k

and so

U;(dlrect)

1

S < max(UM)S;

direct)

= UZL( < max(U).

(direct)

A similar result holds for the minimum and hence we can deduce that UL

is a monotone scheme.

Performing a similar argument for the lumped weak Lagrange-

Galerkin method, (27) we get

U7 s < max(U) Y 3 wndi(y(ee)

elements k

but now

> Lwdiylen) # [ ey

elements k
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except in the trivial case, and so we cannot infer anything about the mono-
tonicity of the lumped weak Lagrange-Galerkin scheme in general. We note that
although analytically dz = dy, in practice this is not the case and if we integrate
approximately over z we maintain conservation but not monotonicity in the weak
method, whilst if we integrate approximately over y we have monotonicity but

lose conservation in the direct method.

4 Results

To demonstrate the potential of this approach we just consider constant coeffi-
cient linear advection in one-dimension on the domain [0, 1] with periodic bound-

ary conditions, that is,

U+ ug, =0

The initial data is chosen to be a square wave

1 04<2<0.6
UO(w) =

0 otherwise,

see figure (1). This represents the worst possible data for the Lagrange-Galerkin
method to represent, as it has none of the smoothness required to prove con-

vergence for the method, and so it provides a useful test for our monotone
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scheme. We will perform 10 revolutions of the square wave. The Lagrange-
Galerkin method can do this problem rather well in just one time-step, and so
the CFL number is restricted (to take the values 5/12 and 1/12) so that we can
observe the accuracy after a large number of time-steps. It is worth emphasising
that although we use small CFL numbers there is no CFL restriction on either the
original Lagrange-Galerkin method or the monotone Lagrange-Galerkin method

described here.

We will include results for several schemes. The exactly integrated
Lagrange-Galerkin method, a monotone scheme based on the exactly integrated
Lagrange-Galerkin method, the Lagrange-Galerkin method with the integrals cal-
culated by Simpson’s rule, a monotone scheme based on the Lagrange-Galerkin
method with the integrals calculated by Simpson’s rule, the exactly integrated
Lagrange-Galerkin method with lumped mass matrix and, to compare with well
known schemes currently in use, we consider two TVD schemes using Van Leer’s

limiter and the Superbee limiter, see Van Leer 1974 and Roe 1985 for example.

In the first case we consider the case of v = 5/12. Recalling the
stability results of Theorem (2) and the subsequent discussion we note that Simp-
son’s rule leads to an unstable scheme. This is demonstrated in figure (2) where
the results are given after just one revolution. After 10 revolutions the maximum
and minimum are around +10'*. The monotone scheme based on Simpson’s rule
stays stable though, it being difficult for a monotone scheme to oscillate. The price

we pay is a loss in accuracy. There is a noticeable phase error. In figure (3) we
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see a plot of the solution generated by the exactly integrated Lagrange-Galerkin
method and the exactly integrated Lagrange-Galerkin method with lumped mass
matrix together with the monotone method based on Simpson’s method. Firstly
we notice that the lumped solution, although undoubtedly monotone, does lack
accuracy. This scheme has much in common with first order upwinding. As a
comparison the solution generated by Van Leer’s limiter is included. Although
the monotone Lagrange-Galerkin method is less diffusive than Van Leer’s limiter
and has maintained a better profile the solution is less acceptable because of the
phase error. Although we would not reccomend that the monotone algorithm is
used to stabalize schemes it would obviously provide a useful safety net given the

need to use a quadrature.

If, instead of using an unstable scheme to provide the high order
solution U¥, we use a stable scheme - in this case using exact integration -
then we achieve a much better solution. In figures (4) and (5) the monotone
Lagrange-Galerkin scheme, with exact integration, is compared to the solution
generated by Van Leer’s limiter and the Superbee limiter. The Superbee limiter
has been chosen because it is especially good at this problem, it being well-known
that Superbee transports all initial data very accurately as a square wave. Van
Leer’s limiter has been chosen for comparison because it is one of the better
limiters that is also fairly robust in that it doesn’t distort smooth data as Su-
perbee would. In fig. (4) we see that the monotone Lagrange-Galerkin method
has done significantly better than Van Leer’s limiter. In fig. (5) we see that the

Superbee limiter has given a better answer that the monotone Lagrange-Galerkin
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method; it must be remembered though that the square wave is a worst case for
the Lagrange-Galerkin method whilst for Superbee it is the best case. Moreover
Superbee generalizes neither to large CFL numbers nor multi-dimensions. The
results for the various methods are summarized in table (i) where the I, errors,

the extremum values and the percentage of mass conserved are given.

In figures (6) and (7) we see a similar pair of pictures. The differ-
ence here is that the CFL number has been reduced to 1/12 and so the Lagrange-
Galerkin method with the integrals performed with Simpson’s rule is now stable,
although it is not terribly accurate and the monotone version based on this scheme
is hence also not terribly accurate. We can draw similar conclusions as before for
when the integrals are performed accurately (in this case exactly). The results

are summarized in table (ii).

At the output time shown both of the monotone Lagrange-Galerkin
schemes presented had exact conservation. Whilst exact conservation was achieved
at most time-steps it was not achieved at all the time-steps. The monotone ver-
sions were always substantially more conservative than the supposedly conserva-
tive exactly integrated Lagrange-Galerkin method. The conservation algorithm
was able to undo many of the conservation errors induced by errors in invert-
ing the mass matrix. If the conservation algorithm is not used and we just take

ap = o™

Vk then the results are visually identical to the results using the
conservation algorithm but now conservation was worse than with the exactly

integrated Lagrange-Galerkin scheme. This would indicate that by taking sub-
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optimal a’s to achieve conservation we are sacrificing very little accuracy.

5 Conclusions

We have shown how to implement, very efficiently, a monotone version of the
Lagrange-Galerkin method that to all intents and purposes conserves mass. This
method is at least as accurate as the best TVD limited schemes but has the great
advantages of being able to be run without a CFL limit and is equally applicable
to arbitrary triangular grids. This will be the subject of a follow up paper. To
aspire to the full accuracy of the scheme the integrals involved must be accurately
modelled. The method can be applied equally well in multiple dimensions where
no new extrema will be created. Conservation and monotonicity are desirable
properties of a scheme in their own right, but in the context of the Lagrange-
Galerkin method monotonicity is also useful to help control the (albeit rather
weak) instability caused by the approximation of the integrals by quadrature for-

mulae. These qualities have been demonstrated on a simple test problem.

The method will next be tried on more severe problems where its
properties will be more severely tested. Although this method could be useful in
many areas of computational fluid dynamics one of the most interesting is the
application of this method to the multi-dimensional wave decompositions of the

Euler equations of Roe 1986 and Deconinck et al 1986 for example.
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A Conservative Algorithm for use with the

Weak Method

In this appendix we give an algorithm for the weak Lagrange-

Galerkin method similar to that earlier derived for the direct method.

The monotone solution UM is defined in exactly the same manner
as in equation (24) but where now UH and U” are both conservative approxima-
tions to the solution. It will be assumed that U* is monotone. The purpose of

the algorithm is now to maximize the o’s whilst maintaining conservation.

Assume that

Z a;naxﬂi > 0.

If this is not the case then the definition is just changed so that

B — —B

Step 1

if B;<0 then a; ="

1

iflag(z) =1
otherwise
a; =0
iflag(¢) = 0.
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Step 2

Define surplus = — Z B
iflag(x)=1
Step 3
Define average value of @ ay = ﬂ
ziﬂaug(k):o Br
Step 4 if asy < P Yk st iflag(k) =0
then QO = AV .
END
Step 5 else Vk s.t. iflag(k) = 0 and aqy > o™
put
ar = o™
iflag(k) = L.
Step 6 GOTO 2.

With both U¥ and U” being conservative then this algorithm guar-

antees that UM will also be conservative.
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Az =1/100, v =5/12 I error | Maximum | Minimum | Conservation (%)

Lumped L-G 0.3648 0.306 0.1166 100.007

L-G (Exact) 9.9%x 1072 1.0611 —6.02 x 1072 100.0048

L-G (Simpson’s) _ . _ -

Monotone L-G (Simpson’s) | 0.3073 0.9998 -3.469x10718 100.0
Monotone L-G (Exact) | 0.10888 1.0 |-1.735%1071 100.0
Van Leer’s 0.1348 0.9558 3.306x 10711 100.0
Superbee 7.1x107? 1.0 2.8 x 10728 100.0

Table i: Errors after 10 revolutions. v = 5/12.

Az =1/100, v =1/12 I, error | Maximum | Minimum | Conservation (%)

Lumped L-G 0.407 0.2101 0.21 100.036

L-G (Exact) 1.0x107! 1.11 -0.115 100.02

L-G (Simpson’s) 0.2976 0.49 1.22x1072 100.024
Monotone L-G (Simpson’s) |  0.2998 0.4857 1.39x1072 100.0
Monotone L-G (Exact) 0.12 1.0 -1.86x 1077 100.0
Van Leer’s 0.157 0.915 3.27Tx107 1 100.0
Superbee 7.23x1072 1.0 2.0 x 1072 100.0

Table ii: Errors after 10 revolutions. v = 1/12,
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Figure 1: Initial data for advection problem.
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Figure 2: Constant advection after one rotation. Exact and exactly integrated
Lagrange-Galerkin solutions—solid lines, Simpson’s rule—A, Monotone (Simp-

son’s rule)—0. Az = 1/100, v = 5/12.41
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Figure 3: Constant advection after ten rotations. Exact and exactly integrated
Lagrange-Galerkin solutions—solid lines, Monotone (Simpson’s rule)—0, Van

Leer’s limiter—+, lumped scheme—x.4%w =1/100, v = 5/12.
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Figure 4: Constant advection after ten rotations. Exact solution—solid line,
Monotone (Exact Integration)—x, Van Leer’s limiter—+. Az = 1/100, v =

5/12.
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Figure 5: Constant advection after ten rotations. Exact solution—solid line,

Monotone (Exact Integration)— X, Superbee limiter—+. Az = 1/100, v = 5/12.
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Figure 6: Constant advection after ten rotations. Exact solution—solid line,
Monotone (Exact Integration)—x, Monotone (Simpson’s rule)—0O, Van Leer’s

limiter—+. Az =1/100, v = 1/12. T
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Figure 7. Constant advection after ten rotations. Exact solution—solid line,
Monotone (Exact Integration)—x, Monotone (Simpson’s rule)—0O, Superbee

limiter—+. Az =1/100, v = 1/12. "



