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Abstract

It is proved that an approximate residual minimisation provides
approximations to the dual functions appearing in the Legendre
transformation. A technique is described for the construction of such

approximations using the Moving Finite Element method.



§0. Introduction

The result contained in this report does two things. First, it
provides a mechanism for constructing numerical (particularly finite
element) approximations to the dual functions involved in the Legendre
transformation in which there has been much recent interest [1,2,3].
Secondly, it reveals that the numerical method known as the Moving
Finite Element (MFE) method [4,5.6,7], which is an example of an
approximation to an envelope construction, is also a Legendre
transformation.

The central idea is to seek the best approximation in a finite
subspace to the Legendre dual of a given function by a double
minimisation of the residual of the symmetric relation between these
functions, in a least squares sense. The structure of the Legendre
transformation, together with its envelope property (see[l]), is
approximately reproduced. The procedure generates numerical
approximations to the dual functions occuring in any Legendre
transformation.

The result offers the opportunity of exploiting numerically the
wealth of qualitative detail available on the Legendre transformation in
reference [2]. Moreover, it demonstrates that the solution processes
already developed for the MFE method may be used for generating the
approximations.

The theorem and proof are first given here for the one-dimensional

case but may easily be extended to any finite number of dimensions.
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Let X, Y, x, ¥y be scalar C? functions with Y a given
function of y . Let Sn' Tn be (ordered) finite dimensional
spaces capable of approximating C? functions arbitrarily

closely pointwise as n = ® .

Define the sequences Xgn). xgn) e Sn of approximations

to X, x by the problem:

Given y(n)eTn. find the extremals Xgn), xo(n)eSn of the

functional

I(n) - ||x(n)+Y(y(n)) - x(n)y(n) | |i2 . (0.1)

Then, if Y(y(n)) - Y(y) as n - o, the sequence
xgn) approaches Y'(y) and Xgn) approaches y Y'(y) - Y(y)
provided that Tn Cc SnU(Tn® Sn) . The two sequences determine

an arbitrarily close approximation to the envelope of the

family of straight lines

X+ Y(y) - xy =0 (0.2)

as y varies.

The proof is in five parts. In the first part the continuous

problem is studied from the variational point of view, while in the

second part this description is repeated using finite subspaces. Limits
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of the solution as the spaces become richer are discussed in part 3.
Part 4 is the main part connecting these limits with the envelope
construction. In part 5 the results are summarised.
Part 6-8 are concerned with the numerical construction of
approximations and the Moving Finite Element method.
81. Proof (1) Consider stationary values of the L2 norm (squared)
I=]X+Y-x[]3 (1.1)
with first variation
6l = 2 (X +Y - xy, 6X + 6Y - xby - ybx > (1.2)
Constrain Y to be a given function of y : then
60l =2 <X +Y -xy, 68X -yox + (Y' - x)b6y > (1.3)

For each y the conditions for a stationary value of I are

CX+Y-xy, 5X>=0 (1.4)

CX+Y-xy,y6x>=0 (1.5)

for arbitrary 6X, 6x ; i.e.

X+Y-xy=0 (1.6)

—y(X + Y - xy) =0 . (1.7)

These equations are satisfied by any pair Xy Xo lying on the straight



line (1.6) in x,X space , i.e.

X0 +Y - Xy = 0 . (1.8)

The stationary value Io of I 1is evidently zero and, since I > 0, I

must be a minimum. Moreover Io is zero for any y so that 61 is i
also zero with respect to variations in y at I = I0 . From (1.3)

< Xo +Y - XV, (Y' = x)oy > =0 (1.9)
for arbitrary 6y ; i.e.

( Xo + Y - xoy) (Y - xo) =0 . (1.10)

§2. Proof (2)
Now restrict the variations of x, X to a finite

subspace Sn with the Weierstrass property of approximating continuous
(and hence C?) functions as closely as desired by taking n large
enough. For example Sn may be the set of all polynomials of degree

n, all piecewise polynomials on a partition of n points, or all finite

Fourier expansions of degree n .

Again, for fixed y as in (1.3), I is stationary if the
(finite-dimensional) extremals xgn). Xgn) satisfy

< xin) yx(z) RO G (2.1)

< xgn) = yx(z) YY), —y ax™ > 20 (2.2)
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v 6x(n). 6X(n)eSn . For a given finite subspace these equations

determine unique xgn). Xgn).

in general. Although the corresponding

stationary value Ign) is not (always) zero we note from (2.1) that
(n) _ 1x(n) _ () 2
I = X = yxg ) + YN 3 (2.3)

=< X(()n) - yxc()n) + Y(y)., [X(()n) _ yx(()n) + Y(y)]-L> (2.4)

where the square bracket lies in Si. the complement of Sn' and -0
as n->o , It follows that Ién)ﬁ O as n=->® , as expected, and,

from (2.3), that
1) - M s Y@ [y 50 as noe (2.5)
Vy : i.e., given e > O, IN(e) such that, for n > N

[ ™ vl <o w (2.6)

§3. Proof (3)
We now discuss the limits of Xgn). x(n) as n=->® . Writing down
(2.1), (2.2) for different integers n, m, with Sn C Sm and

subtracting, we obtain

R T

< —y(X((Jn) —x(()“‘))+ y? (xgn) - xf)'“)). x(®) 5 _o . (3.2)



-8 -

It follows that the first factor in each case lies in Si and -0 as
n = ®: moreover in general, given € > 0,3 Nl(el) such that

(provided y # 0) if n > Nl'
llxgn) = x(()"‘)ll2 Cep kM- x(m)!|2 < e (3.3)

and hence both sequences Xgn). xgn) converge in the Cauchy sense.

There exist limits Xgm). xgw) (not necessarily unique) with the

property that, given €q >0, 3 Nz(ez) such that, for n > N2.
[+ n o
llxg“) - xg )||2 4E, ||xg ) xg )||2 { &5 (3.4)
Since Ign) - Io =0 as n - %, we have
[+ 0] 4]
xg ) yxg Y y(y) =0 . (3.5)
§4, Proof (4)
Now consider variations of the residual
R () = x - ™ s vy (4.1)
o o o

with y, regarding Xgn). xgn) as functions of y . We have

RO (yeay) - RV () = x(M (yeey) - Py

- y(Xﬁn)(y+6Y) - X§n)(y)} + Y(y+dy) - Y(y) (4.2)
axgn) ax ™) (n)
N N N T

y+86y



= g =

by a Mean Value Theorem, where 0 < 8 < 1 .

Taking the inner product with Rgn)(y+96y) , we obtain

<R (yroey). @ (yray) - R () >

= < R (y+05 [axg“) ax(() ) () 4y ] sy > (4.4
= o  (y+68y), I "V EH % (Y)y+96y y (4.4)
Returning to (2.1), (2.2), we make the choices
(n) (n)
gx X
sx() _ —% ) gpld) o T° sy(™) (4.5)

assumed to lie in Sn . For this purpose we must restrict y to lie in

an associated space Tn (see below). It then follows that the first

two terms in the square bracket on the right hand side of (4.4) vanish,

so that (if y = y(n)eTn)

¢ RO (Mg (), () (p(R)(y () 5 () _ () ()

+[x(()n)— Y'(y(n))] sy(™ - o (4.6)
S0), g(0)5, ()

Finally choose 6y(n) = 0 except in a neighbourhood n(§) of a
particular point ¢§, where n(§) 1is chosen sufficiently small that
Rc()n)(y(n)+6(n)5y(n)) #£0 . (If this is not possible, Rf)“) =0
in n(f). see below). Then the inner products in (4.4) reduce to

integrals over 1(f) and, using a Mean Value Theorem for integrals,

[ {Rgn)(y(n)+5y(n)) - R®) () 4 () Y.(y(n))} oy ™ ] .

S gy (m) ¢

. JRgn)(y(n)+66y(n))d§ = (0 (4.7)
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for some E*e n(§) . Without loss of generality we may take mn(§) to
shrink to zero with ©6y(n) ., i.e. 3 a variable ¢(n) such that

f* =f + ¢(n)5y(n) . Hence, if JRgn)dE #0 ,

n(§)
(m) _ gy _o 1 (n) [,(n) (n)
v ™| g RV o]
S (8),g(0)5, ()
IRCHIEY .
n
- R, (Y)]
£ap (™) 5y ()
(4.8)
and, from (2.6) and (4.1), if n > N,
(n) _ () _2e
l X Y'(y )“ < |5y(n)1 ¢ (4.9)
S(0),g(n) 5 (0)
£ () 5 (1)

Therefore, given ey O, 3 constants 7*. 5*(&*) and k such that,

for 0 < 7 < |6y(n)| ¢ 8 and n >N chosen such that e = %-e*w* ,

‘ xm) Y'(y(n))ll T (4.10)
() g(m) 5, ()
NG EY

for some G(n), ¢(n) .

gn)eSn and y(n)eTn . From (4.5) we can relate the spaces

Here x
Sn' Tn . Recall that we used (2.1), (2.2) to eliminate two of the terms
of (4.4). In fact it is easier to see the required relationship from

(4.2), where the corresponding terms vanish by (2.1), (2.2), at least to
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0(6y)?, if

T CS_U(T®S) . (4.11)

Thus Tn = Sn is sufficient, but so for example is

Tn = 9k , Sn = 9L (k,{ any integers) where 9n is the space of
polynomials of degree n , so that Tn can have more or less continuity
than Sn . An important case is Sn = piecewise linear functions, Tn =
piecewise constant functions, on a partition of the § interval, as we

shall see below. This corresponds, however, to a special case of the

proof which we now discuss.

If it is not possible to choose n(§) sufficiently small that

Rgn) # 0 or, what comes to the same thing,
. = (4.12)

just before (4.8), where the argument y(n)+9(n)6y(n) of Rgn) is

understood, it follows that

R L x(®) ) Ly 2 0

(4.13)
in a neighbourhood of § . (We thus apparently have an exact Legendre
transformation but in this case

X(n) £Y (y(n)) (4.14)

in general since they do not belong to the same space.)
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Variations of Rgn) within the neighbourhood are also zero. In
particular, considering variations with respect to Xgn) and xén) , we

have from (4.1) that
sx(™) _ o = sx(™ | (4.15)
0 o
Now take variations of Rgn) with respect to y at y(n) + B(n)éy(n)

regarding Xgn). xgn) as functions of y . We have (c.f. (4.3)) that

in the neighbourhood n(§)

K
0 0 n ' =
[ZT - W - Xo + Y (y)](n) (n) (n)-—- 0] (4.16)
y=y" '+6% by
Finally, suppose that (4.10) does not hold, i.e.
() =y (™)) (4.17)
° (n), ()5, (1)
y +6 Sy
is bounded away from zero for some § e 1n(f) and some n > N . Then,
from (4.16),
ax(“) ax(“)
0 o]
2 . _9 4.18)
||3y dy II (
() (1) 5, (m)
is also bounded away from zero for this § and n . Thus with Xgn),
x(n) e S_, y(n)e T_ so that variations
o n n
() ax(n) =) ax(™)
- ) = = L) |
0= 6X0 = 3y 6y , O = éxo = 3y Sy (4.19)
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are permitted in (4.15), it is seen that (4.18) gives a contradiction.

Hence (4.10) holds in this case also.

85. Proof (5

We have shown in (3.4) and (4.10) that xgn) tends to a limit
as n - and that xgn) is arbitrarily close to Y'(y(n)) . Suppose
that the space Tn has the Weierstrass property of infinitely close

approximation to continuous (and therefore C2?) functions.Then

18 = v ) S = - v Oy [y Py - vl

(5.1)

and, by (3.4), (4.10) and continuity of Y'(y).is less than any given
small positive number €y provided that 6y(n) is sufficiently small
and n 1is sufficiently large, where xgn) and Y'(y(n)) (or Y'(y) are

evaluated at y(n) + B(n)éy(n) (or y + 688y) and § + ¢(n)6y(n)

Here
0<CB<C1l and Gy(n) is a small number bounded away from zero.
Hence xgw) is unique and arbitrarily close to Y'(y) . From this
result and (3.5) we deduce that
0 [+
Vv L DV ayvm - (5.2)

It follows that xgm), ng) lie on the envelope of (3.5) as y varies
and that there exists a Legendre transformation between the dual
functions Y(y) and Xgm). as in the continuous case.

This completes the proof. The extension to many variables is

simply stated by replacing x, y in the statement of the Theorem in 8O
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by Xih Yy (and using the summation convention) and by replacing the

words ''straight lines" by "hyperplanes". The proof is then an extension

of the above.

We go on now to discuss the numerical construction of the

approximations.

86. Construction of Approximations

We have shown that the extremals Xgn). xgn)e Sn of the functional

1%+ vy - x(™) y‘“)lle (6.1)

approximate the envelope, as y varies, of
X+Y(y)-xy=0. (6.2)

Since the equation of the envelope

X = W (63)

induces a Legendre transformation between Y(y) and X(x) (see [1]) the
extremals of (6.1) can be used to furnish approximations to the
functions appearing in any Legendre transformation [2] through the
conditions (2.1), (2.2).

A standard approach is that of finite elements. The functions
X(n), x(n) are expanded in terms of a finite number of basis functions

¢j (spanning Sn) and the function y(n) is expanded in terms of a
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finite number of basis functions ¢k (spanning T(n)). Then (2.1),

(2.2) imply that
<3 Xgn) 4 -3 y(n)xgn) 6+ vy™)y e, (6.4)
<3 xg.n) by - 3 y(n)xg.n) b+ vy (™) ,—y(n)¢i > (6.5)

(orthogonality with respect to 5x(n) or Bx(n) being equivalent to
orthogonality with respect to ¢i). The suffix o 1indicating extremals
has been dropped. When the basis functions are of compact support (6.4)
and (6.5) lead to sparse matrix equations for the unknown coefficients
Xj’ xj , for each y(n)e Tn .

In the particular case when Sn is the set of piecewise linear
functions and Tn is the space of piecewise constant functions on a
partition of an interval, equation (6.2) can be exactly satisfied
although (6.3) is only satisfied approximately. The solutions for

x(n). X(n) in this case (see [6]) are the piecewise linear functions

with nodal intersections

Yy -1 (™) My My Ply )y
yén)_y{n) yl(ln)_ yén)

, (6.6)

respectively, where yén) and yén) are the piecewise constant values

of y associated with elements to the left and right of each node.

87. The Moving Finite Element Method

A finite element method with this structure is the Moving Finite
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Element (MFE) method of K. Miller [4] in the form studied by Mueller and
Carey [5] and by Baines and Wathen [6]. This is a method of

approximately solving the time-dependent pde

W, = Lv (7.1)

where Lv 1is an operator incorporating space derivatives but not time,

by writing it in a frame moving with speed X as

v-vx=-Lly=0 (7.2)
and obtaining G. X by minimising the functional
J=||v- V. X - Lv||L (7.3)

2

over v, x in an approximation space. The unknown functions v, x (or
v, x) are expanded in piecewise linear basis functions while the

function Vo is expanded (consistently) in piecewise constant basis

functions.

If Lv 1is a function of Vo only, i.e.
vV-ovx-Llv=v-vx+ f(vx) =0 (7.4)
say, there is a precise correspondence between (7.2) and the form

TQFONC PRI .
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of previous sections, with
X =v, x_ =x, y=u , Y=-£(v) . (7.6)

Sn' Tn are the spaces of piecewise linear, piecewise constant
functions, respectively, so that (4.11) is satisfied.

In this case (7.2) can be satisfied exactly [6],[7] as in equation
(6.6). Hence the MFE method is a Legendre transformation between the
dual functions Y(y(n)) 5 f(vx) and Xo(xo) = v(x) and, by the earlier
theorem, G(i) approximates the envelope of (7.4) as Ve varies, i.e. x

approximates af/avx .

Moreover, a numerical procedure has already been developed [6] in
the MFE method for the solution of (6.4), (6.5), which is available for
the construction of approximations to the Legendre transformation.

Briefly, (6.4), (6.5) are written in the matrix form

Av™y x=p (7.7)
T ) = xgn).xgn)....) L b={b} . A=A},
boy = < Y™) L ey > o> <yMeg o
Aij =
by = < Y™, ay -y 0> <™y 00

In the usual MFE method Sn = span {¢j} = piecewise linear
functions and Tn = span {wk} = piecewise constant functions. In this

case the matrix A has a simple decomposition (equivalent to a double
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assembly) which allows fast inversion by the pre-conditioned conjugate

gradient technique [5],[6],[8]. The resulting approximations
x(m) L5 xn) 20) & 3 glnde (7.8)
J J J J
provide the Legendre dual of the function
vz y{™ v (7.9)

We observe that for Lv of the form f(vx) and for these spaces
the MFE method is an example of a Legendre transformation. For other
spaces the same approach may be used although the algebraic techniques
will be generally less simple [6],[9].

For other forms of Lv we can say the following (c.f. [7]).

In the case

Lv = - f(v,vx) (7.10)

it can be shown that the same structure holds and that again the MFE
method may be regarded as a Legendre transformation but using a related
variable. In the original variable, however, it is only an approximation

since in this case equation (7.5) can no longer be satisfied exactly.
The same applies to

Lv = - f(x, vx) or Lv = - f(x,v.vx) . (7.11)

In addition § may be introduced as a passive variable [1].
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Finally, for

Lv = Vix (7.12)

it can be argued that an envelope structure exists in a particular sense
(see [7]) and hence also a Legendre structure. More specialised and

detailed analysis is required in this case, however.

§8. Examples

(1) Consider

- L = f(V ) = —_— (8'1)
M o vRag(1-v )2
X X

which corresponds to the equation

2
v

v+ S (8.2)
v2+4(1-v )2
X X

whose x derivative is the Buckley-Leverett equation in the variable

u=v. . namely,

u +[——uz ] =0 (8.3)
¢ u?+4(1-u)? e

In the notation of the earlier sections (8.2) corresponds to

2

Y(y) = —L—— (8.4)
YE'H&( l_y)z
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and the Legendre transformation yields

x < y" o —x(1=y) (8.5)

[y2+4(1-y) 212

X = %Y—u 1-3y* (8.6)
[y?+4(1-y)2]?

Take Sn. Tn to be the spaces of piecewise linear, constant
functions, respectively. Then, according to the theorem of 8§81,
minimisation of (0.1) over X(n). x(n) in the finite space Sn (or
setting (0.1) to zero) provides the approximate envelope corresponding
to (8.5). In the present example y(n) lies in Tn and equation (6.2)
can be satisfied exactly (as in equation (6.6)). Given a partition, it
is therefore straightforward to calculate the "approximation'”. (Note
that the approximation is only to the envelope equations, because the
Legendre transformation is exact.

Figure 1 shows the y, Y and x, X curves in the continuous
(infinite dimensional) case and the corresponding finite dimensional
approximations. The most distinctive feature is the cusp in the
X, X plane. It shows that x , which is the velocity x in the
original problem, increases to a maximum and then decreases. This is
associated with the formation of a half-shock (a compression abutted
with an expansion). The variable X 1is the time rate of change of v .

In the finite dimensional case the constant values of Y(y(n)) in
Tn are obtained by sampling points on the y, Y curve: as a result the
dual in Sn samples the tangents enveloping the x, X curve. This is
in fact a Legendre transformation in itself. Alternatively, we could
have obtained the constant values of Y(y(n)) by a least squares

projection.
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In that case we do not expect the projection points to lie on the y, Y

curve nor the lines in the dual space to be tangents to the x, X curve.

~C
.
=
\
7

Figure 1.

(ii) The second example has more generality. It is the general form of

(8.3), namely,
u, + £(u) =0 . (8.7)

This time u 1is the object function while the approximation spaces S

Tn are as before. The transformed left hand side of (8.7),

u - ux{c + £(u) (8.8)

has a non-zero residual when u ~ U e S , x~XeS ,u ~U T,
n n X X n

and the least squares procedure comes into play. The weak forms are



- 99 -

(6.4) and (6.5) in the form

QU o+ ) X (U 4y + £QU), . ¢y > =0

) ) _ (8.9)
) O, 6+ }xj(—ux)j b+ EU), . (U4, > =0

Since, for these choices of Sn’ Tn' the space spanned by the functions
¢i and (—Ux)i ¢i is also spanned by the restriction of the ¢i's to
each element (provided that (Ux)i differs from element to element),

these equations can be written [6], [8]

%hL(ij— mX) + (£ ?’J‘.) =0 (8.10)
0. 5 y R
5 bp(0- k) + (£~ F)) = 0 (8.11)

where h and m are the element length and slope u in an element,

L and R refer to elements to the left and right of node j

L1 J’j . R 1 JJH
£f.=f(U,) , f, =+ f(U)ax , £, = = £(U)dx , 8.12
3 (J) iTh (U) iy (U) ( )
J=1 J
leading to
« 3 R 3 L
X.==(-f+f)-=(f,~f
A hR( ANRRY hL(.] i)
T T (8.13)
m,. — m
J J

approximating x = afx/aux (see[8]). By subtracting equation (8.10)
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from (8.11) with j replaced by j-1 in (8.11) we also obtain

3 =L R
a7 = f,+ £, . - £ - {7, 5
mJ_% hJ_%( j J"‘l j J"‘l) (8 14)

approximating ﬁx = —-9f/8x . Equations (8.13) and (8.14) may be solved

for Xj' mj_% g
It is the equivalence of (a) the two equations (8.9) and (b) the

equations (8.13) together with the first of (8.9), at the level of

general approximation spaces, which is the essence of this report.

Equally, both are equivalent to (8.13) and (8.14).
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85. Conclusion
It has been proved that minimisation in a finite space of functions

of the L2 norm of the residual of the left hand side of the equation

X+ Y(y) -xy =0 (.1)

occurring in the Legendre transformation over both of the variables

X, x , generates an approximation to the envelope of (9.1) as y

varies, where Y 1is a prescribed function of y , and hence to the
Legendre dual function X(x) of Y(y) . The conditions for the minimum
provide a mechanism for the construction of the approximation using
finite element subspaces, in the manner already studied in the Moving
Finite Element method.

In the particular case of piecewise linear/piecewise constant
function spaces, the minimum is zero and (9.1) is satisfied exactly,
i.e. the Legendre transformation exists within the approximation spaces
as well as in the continuous problem. In this case, however, the

envelope equation is still only approximately satisfied.
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