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ABSTRACT

Systems of linear equations involving submatrices of singular M-matrices
have been considered in the calculation of stationary distribution
vectors of ergodic Markov chains. In this paper, we suggest an alternative

approach using bordered matrices of the M-matrices instead. The conditioning

of the approach is analysed.



1. Introduction

Consider the problem of finding the right eigenvector p
corresponding to the simple zero eigenvalue of the n x n matrix A, 1i.e.
(1.1a) Ap =0
subject to the scaling constraint
(1.1b) eTp = 1
for some vector e not defficient in the left - eigenvector corresponding

to the zero eigenvalue.

The problem in (1.1) arises from the calculation of the stationary
distribution of an ergodic Markov chain, where the vector e in

(1.1b) can be chosen to be the left-eigenvector

(1.2) e=(, ..., //n

with He"2 =1, and A an M-matrix. The solution vector p can then

be proved to be positive.

Background information on the problem can be found in [11[2][11]1-[14]
[16101711191([211-1231[2510(261(28]) on M-matrices and Markov chains, and
the references therein. Various numerical algorithms and applications
were suggested and analysed.

The conditioning of the problem has been examined through the use of

#

A" , the group inverse of A (c.f. [141[161[22]1), or the smallest

positive singular value of A (c.f.[11[189]).

In [11, Barlow solved the problem in (1.1) by the following
algorithm:-

ALGORITHM (BARLOW [11):-

1. Find j and k such that

(1.3) A - p.(? y]PT
JLUT -
zZ o

where F’i exchanges rows 1 and n .




(B is a submatrix of A by the deletions of the j-th

row and k- column.)

2. By LU or QR decomposition, solve

A~

(1.4) Bx

"

Ty

~

n
3, let x =P (%) and p = x/(% xi) "

S i=1
such that ||p||1 =1 , a different scaling from (1.1b).

Barlow proved that

0[A]
(1.5) ”:? 3 cﬁ?i < oﬁéi ;
(|vk |~ +1)(Vn+1)
n
where oim] denotes the i-th singular value of the matrix M

for some number |an| (see [1] for details).

0[A]

n-q s @ "condition number” of the problem in (1.1)

As

(c.f. [11[19]1), it is claimed from (1.5) that solving problem

(1.1) or (1.4) involves the same conditioning.

The algorithm is inadequate in the following sense:-

0(A)

(a) o1

only was used in reflecting the condition of the

problem (1.1) , and the usual condition number

_ -1 _ -1
(1.6) s, - cos (e,p) = cos [@n]

by Wilkinson [29] is not involved

(b) In addition, oi?i was used to represent the conditioning

of (1.4), and not the usual condition number.

B -1 _ (B) (B)
(1.7) k,(B) = IBl,.lB I, =0, /0o
(c) The lower bound in (1.5} can be poor and vertually zero

for large enough n or small enough |an|
(d) It may require to solve (1.4) more than once to choose

P in algorithm to maximize |v

k Knl

»




In order to overcome the problems stated in (a)-(d] above,
an alternative algorithm is suggested as follows:-
Solve for some vector g
- A qf{x o]
(1.8) Ax = T o=
e 0)\8 1
by QR or LU decomposition, then scale x to form p
according to some desired scheme, if different from (1.1b).
Note that g in (1.8) should be 1 and can serve as a check of

accuracy in the algorithm.

The idea of bordering a singular matrix to yield a nonsingular one
is an old one [3]. It is also related to inverse iteration and
Newton’s method [(101[151(201[24], and has various applications,

e.g. [41[5]1[27].
The main result of this paper is
2 2 JZ 0 2
(1.9) G o= ) = By kg 6,
for some constants é?i , which are dependent on cos On but

small under normal circumstances, and the conditioning of problem

(1.1) can be represented by the quantity

(1.10) SIS KZ[A] = KZ(A] / cos On

(recall (1.6) . )

It is important at this point to stress that the assumptions that A
is an M-matrix, or e is in the form of (1.2), are not essential in

the investigation in this paper, except in comment (5} in Section Sr

Note that the problem (1.1) has been analysed thoroughly in the context

of eigenvalue problems by various authors, especially those by Wilkinson

[241029], and all algorithms suggested (including ours) are equivalent to the

inverse iteration [241[29] in some way. It is with this understanding in
mind that this paper is written, and efforts have been made to relate our

results to others, especially those by Wilkinson [24]1[29].



(2.1a)

(2.1b)

(2.2)

The result is comparable to that concerning | A

Conditioning of Problem.

From (29], s, in (1.6) is condition number of the problem

in (1.1), with [A (the smallest non-zero eigenvalue of A,

n-’l|
in this case the separation between the zero and non-zero spectra)

appearing in the second order perturbation error bound.

In [11018], it has been shown that oﬁéi is a condition number of
the problem in the sense that :

if p satisfies the perturbed system

we have , for &p = p-p .

lepl, s (1+ Va3 . Izl / oM

n_1| in [29].

By treating (1.1} as a homogeneous system of equations with

constraints, we can prove the following lemma:

LEMMA 2.1. Let A be a singular nxn matrix of rank n-1. It 6p

satisfies (2.1), then

(2.3)

Proof.

(2.4a)

(2.4b)

with cos On = cos (e,p) =

I5pll, ) (A1 el
Ipl,, cose_ 1Al
:
le 'p|

|IeII2.IIpll2

From (1.1) and (2.2), one has

From (2.4a) ,




(2.5) §p = A'r + Yp

for some constant Y , and A" denotes the (1,2,3,4)-

Penrose-inverse of A [18].

Let the singular value decomposition SVD

T
(2.6) A= (U,,U = Ve - ST
n . VT 1 1

n

0 "0

Note that Un = g and Vn p/"pll2 ;

or p = Vn / UIVn from (1.1b)

of A be

or

Premultiply (2.5) by eT , and using (2.4b) , one
has
(2.7) Y =-ea'r
Substitute Yy in (2.7) back to (2.5) , using the well-known
expression for A+ [18] in terms of the SVD
(2.8) At = v, s T,
1 1
one arrives at
_ -1,,T Ty 1, T
(2.9) Sp = V1Z U1 . T UnV1Z U,| . T .p
=0 .vr U..
o 1
vu'
nn
with 0 = T -  eom—— N
UTV
n n

It is easy to prove that "0"2 = cos_q(On] by considering the

eigenvalues of QQT

From (2.9), it is then proved that

-1
"5p"2 HQH2 .z H2 i Hr"2 K, (A)

A

Ipl, Ipl, cos O

-1.-1 _ _(A) -1
from the fact that X H2 = 0._; and Hp"2

from (1.1b)




Notice the appearance of cos On in (2.3), in agreement with the

results by Wilkinson [29]. Also, using KZ[A] instead if Oééi reflects
the scaling of the problem, as seen from the relative error inequality

in (2.3).

In [14]10(181([22]1, "A#"z can be proved to be a condition number
of the problem. The following lemma links up the group inverse condition

number HA#H2 with the traditional condition numbers:

LEMMA 2.2 : The group inverse A# can be expressed in terms of the

SVD of A in (2.8) by

# T -1 -1 T -1 .7 (c.f. (2.8).)
(2.10) A" = U1 (V1 U1J > (V1 U1] V1 .
In addition, one has
(2.11) afI. s 1ATH cos™2 (83 = [oA) | cos? (8]
2 n n-1 n
Proof : It is easy to check that A# expressed in (2.10) satisfies
the conditions [16]
# # # # # #

AATA=A, ATAA =A and A"  A=AA
#

As the group inverse A# is unigue for given A, A

in (2.10) must be one of its expression. (See [141[161[22]
#

for more information on A" .)

-1
# T =

From (2.10) , 1A H2 s iz H2 . H[V1 U1]

T # ana

2

IA

(2.11) is proved from the C-S decomposition [18] of
viu = wv,v’ L wLu)
1°'n 17°7n
Q.E.D.
Note that a similar Lemma to Lemma 2.1 gan be proved using Lemma 2.2 and
the analysis in [14]
From [61[7], the quantity "(VI U,I]_1||2 can be shown to be related

to the conditioning of the non-zero spectrum of A




It is clear from Lemma 2.2 that "A#H2 is a good condition number of

the problem (1.1), as it combines the effects of the quantities HA+H2 and

cos ©
n

A new way of calculating the group inverse A# will be to use the formula
(2.10), with [VI U,]J_1 constructed by an additional SVD, QR or LU decomposition.
The SVD’s (for A and VT U) will be essential if rank determinations

are critical in the calculation. (For another algorithm for calculating

A# , see [14].)

3. Main Result.

Consider the eigenvalues of the matrix A A , where
- T
(3.1) e (AT e) _fu, u, o]z o c v1T 0
Le 0 0 0. 1110 0 CZ V 5 0
i 1 0 0 1

2

(c.f. (2.6).)

OFA]]
i

which are (

Equation (3.1} implies that A AT is unitarily similar to the

matrix
2 T
(3.2) p C1 0 2 0 0 = | + C1 C1 CZ C1 0
T T

8] C2 0 C1 C2 0 iCZ C1 Cg 0
o 0 1 {0 o0 1 \0 0 1
T _ T _ 2 N

Note that C' € = (C, , C,) fc1 el =1,

&
(3.3) |C2| = cos @ and HC1"2 = sin 0

Consider now only the nxn submatrix M of (3.2) by deleting

the last row and column. It is a rank-1 update

(3.4) M= |Z 0 +CC




Using the theory for rank-1 updates [181[29], we have the following

inequalities :-
3.5 |07 s ™) s Wi,
- oﬁMJ < onfﬁ) ’ O;M] £ 1
Note that, from (3.2) iand (3.5) ,
(3.6) 05;1 = max {11 OSM]} , oﬁéi = min {1 ,cﬁM)} = oéM]

One can prove the following lemma concerning the lower bound

(M)
by o
LEMMA 3.1.
2 (A) 2
(3.7) [oéM]Jz > ©0S en ® (on—1)
[G(A]IZ + (sin®_ + cos® ]2
n-1 n n
cos2 0 [O[A]JZ
> n n-1 .
(o[A]]2 + 2
n-1
Proof:- From the well-known rank-1 update of an inverse formula [18]
G A L L R TR VLI N SRR VLI Ve TO S
the inverse of M in (3.4) equals to
-1 -2 ' -1.-2
A T A S SO
-1 T -2 ; =2 T -2
C2 C1 2 E C2 (1 + C1 > C1J
Let (céM)J-Z = HM-1N2 = xT IVI_'l x for some x of unit length.

The properties of norms and (3.3) imply that

[0£M]]_2 < [O(A] 2

n-1

) (1 + tan® ]2 + sec26 ,
n n

which implies (3.7), with max (sin® + 0050)2 = 2

C)
W.E.D.




_']D._

We can then prove our main result, stated in (1.9) in a slightly

different form:-

THEOREM 3.2

(3.8) G s A 5 (€ . kA« By L oosi0)
. < _ (A) (A)
where (i) é; =5 , é% =1 for o, 2 1 s O] £ 1 .
.. (A).2
1) G -+ HH L6 =1
- _ (A),2 |
or 51—2,é2~3+(o11 ;
for O(A] z 1 , c(A] z 1
1 n-1
i (A),-2 _
(iid) 531 =3+ 2 (o1 ) ; d;é =1
iz _ (A),-2 .
or 51—2,52—2(1+[0n_133,
for o[A] £1 , O[A] <1
1 n-1
Proof : From (3.5)-(3.7) , one can prove
2 2.5 (A),-2 (A) 2
K2[A] = KZ[AJ £ [2 + 2(01 ) + (cn_1) 1. KZ[A] + 1
2 (A).-2 (A) 2
or 2e5(A) + 1+ 2(0n_1] + (c,I ) e
By considering the three different possible cases (i)-(1ii),
(3.8) follows.
Q.E.D.
Comments :-

1. Note that égy and 5;2 are small, except in the pathological

0[/-\J -y 0[A]

1 n-q are both very large (in case (ii))

case when
or very small (in case (iii))in comparison to unity.

In such an unlikely ill-scaled event, a scaling factor can be used to

(A) (A)
o, g

212
=12 n-1

scale the problem back to case (i), when

Such scaling factor may be estimated by techniques described in [8][9]

for the estimation of condition numbers.




._11_

(2) For ill-scaled problems, or problems with small cos On ,
iterative refinement technigques in [271[29] may have to be

used to improve the accuracy of the solution.

(3) One can choose gq in (1.8) to be other vectors which is not
deficient in p for the algorithm, and the discussions in this
section should still hold in a loose sense, if cos(g,p) 1is not
too small. If one is so lucky to be able to choose g nearly
equal to p (the solution!) , one can replace the angle @n in
in (3.7) bv the value 0 . However, the factor cos On in Lemmas

2.1 and 2.2 still remains.

(4) One may want to solve the problem for g = e to obtain an
approximate p , and solve the problem a second time for g = p
It is not recommended, however, as g = e should provide a good

solution for well-conditioned problems (with small On] , and one

cannot escape from ill-conditioning, according to Lemma 2.1

(5) It is easy to show that A is an M-matrix if A 1is one.
The techniques in [1110121[13] can be used to solve the system of
equations in (1.8) without pivoting, the only benefit of requiring

A to be an M-matrix in this paper.

(8) For rank > 1 .defficient cases, one may want to find P such that
[ AP =0
1 ETP =1

A similar theory to the one in this paper will hold but one has to

have prior knowledge of E for the scaling of P.

4. Conclusions
A direct algorithnfor solving (1.1) has been proposed. It has been
proved that the conditioning of the algorithm is comparable to that of the

original problem. Wilkinson's condition number for eigenvalue problem,
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s, = cos i [Oi] , and KZ[A) have been shown to have important

roles in the conditioning of the problem and the algorithm.
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