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Abstract

Variational principles have been derived whose corresponding functionals are
stationary for solutions of the shallow water equations of motion. In this paper a
method is described which uses these variational principles to generate
approximations to shallow water flows in channels of various breadth and fixed bed
profiles. The approximations are derived as those functions in a finite dimensional
subspace for which the functionals of the variational principles are stationary with
respect to variations in that space. Approximations to both continuous and
discontinuous flows are generated.



1 Introduction

The problem of fluid flow over uneven topography and through constricting
channels has been of interest to hydraulic engineers and meteorologists for
many years. The equations governing those flows are non-linear, as are the
boundary conditions, and the position of the free surface is an unknown of
the problem. Variational principles for such flows have previously been used
by, for example, Ikegawa and Washizu (1973), to model flow over a spillway
crest, and by Aitchison (1979), to study flow over a weir. In both of these
cases finite element approximations to free surface flows are derived and the
main issue is the calculation of the position of the free surface. By making
the shallow water approximation, in which the motion of a vertical colum-
n of fluid is replaced by a representative motion in the horizontal spatial
coordinates, the problem may be reduced to a two-dimensional problem in
a domain which does not vary with the position of the free surface. Func-
tionals which are stationary for the solutions of the shallow water equations
have recently been derived in Wakelin (1993). In the present paper we de-
scribe a numerical algorithm in which variational principles based on those
functionals are used to obtain approximations to the motion of an homo-
geneous, incompressible, inviscid fluid over a fixed bed profile, modelled by
the shallow water equations.

The natural conditions of a variational principle are those which make
the corresponding functional stationary. Luke (1967) showed that a vari-
ational principle in which the integrand (the Lagrangian density) is taken
to be the fluid pressure, as given by Bernoulli’s energy integral, has as its
natural conditions the equations governing a free surface flow. There is a
point of contact between incompressible free surface flows and compressible
gas flows if the shallow water approximation is invoked (Stoker, 1957). This
relationship is discussed more fully in Wakelin (1993). Bateman (1929) gave
functionals which are stationary for solutions of the equations of motion for
compressible gas flows. These functionals have been used by, for example,
Lush and Cherry (1956) and Wixcey (1990) to obtain approximations to gas
flows.

In this paper, shallow water theory at its lowest order is considered,
which is the basic theory used in hydrostatics to model flows in open chan-
nels. The domain in which approximations are sought is here a channel of
slowly varying breadth, so that, to a first approximation, the flow can be
thought of as being quasi one-dimensional. In Wakelin (1993) the variational
principle of Luke (1967) was used to derive a set of four functionals which are
stationary for the solutions of the shallow water equations, each function-
al depending on a different subset of the variables of shallow water theory.
In Section 2 below variational principles for time-independent quasi one-
dimensional flow are presented. Both continuous and discontinuous flows
are considered.

The Ritz method can be used to obtain approximations to the extrema
of a variational principle by expanding the variables in terms of trial func-
tions and using the variational principle to generate the parameters of the



expansions. A finite element approach is implemented by dividing the region
into elements and choosing the trial functions to be piecewise polynomial
in each element and zero elsewhere. Here we shall use piecewise linear and
piecewise constant trial functions. The method is to seek those functions
in the finite dimensional subspace spanned by the set of trial functions for
which the functional corresponding to a particular variational principle is
stationary with respect to variations in that space. The parameters of the
expansions are found by solving one or more sets of equations, at least one
set of which is non-linear.

In Section 3 a constrained variational principle is used to generate ap-
proximations to the depth of flow in a channel for several different channel
breadth functions and fixed bed profiles. In Section 4 is derived an error
bound for the piecewise constant approximations to the depth, generated
in Section 3. The unconstrained version of the variational principle is used
in Section 5 to give approximations to the depth, mass flow and velocity
potential functions. However, in this version, the approximations to the
velocity potential (and therefore to the velocity) are generated using the ap-
proximations to the depth and mass flow already computed, which reduces
their accuracy. In Section 6 a constrained version of a different variational
principle, which depends on the velocity potential alone, is used to give more
accurate approximations to the velocity potential.

In Section 7 approximations to discontinuous depth profiles are gener-
ated. The algorithm is based on forming separate approximations to the
continuous parts of the depth function and coupling the approximation-
s with a discontinuity by using the jump conditions. As a result of this
process an approximation to the position of the discontinuity is also found.

2 The variational principles

Consider a channel which extends over the interval [z.,x,] of the z-axis.
Let B(z) be the breadth of the channel, defined at each point z in [z, z,],
and let A(z) be the depth of undisturbed fluid, also defined on the interval
[Ze, o] Assume that the channel is of rectangular cross-section and that
it is symmetric about the z-axis. Then, provided that B and h are slowly
varying functions of z, the flow is quasi one-dimensional in the z direction, to
a first approximation. The motion is also assumed to be time-independent.

Let d = d(z) be the depth of fluid and let v = v(z) be the velocity. Then
the mass flow @ = Q(z) is defined by

Q =dv (2.1)
and the function E = E(z), defined by
1 2
E=gd+ ¥ (2.2)

is an energy per unit mass, referred to as the energy. Let ¢ = ¢(z) be the
velocity potential.



The two variational principles for quasi one-dimensional shallow water
flow, taken from Wakelin (1993), which are used in this paper, are given by

To

1,0, 9) = { [ (o0, B)+ Q- ¢)) Bda + OB (9(a2) - d(z2)) | =0,

e

(2.3)
615(d,Q,9)=¢ {/ " (r(Q,d) + Ed - Q4¢) Bda + CB. (¢(,) - ¢(fve))} =0,
Te (2.4)
where
p(v,E) = 21_g<E— %'02) ) (25)
(@) = 5 (% . gd2) , (2.6)

C is a constant, to be defined, B, = B(z.) and g is the acceleration due to
gravity. The function E(z) satisfies

B(2) = E + gh(a), (2.7)

where E is a given constant. The variational principle (2.3) is known as the
‘p’ principle and (2.4) as the ‘r’ principle.
The natural conditions of the ‘p’ principle (2.3) are given by

P+@=0,v-¢'=0, (BQ),ZOin (e, o), (2.8)
CB.-Q@QB=0atz ==z, and ¢ = z,. (2.9)

Equation (2.8); defines the mass flow @ in terms of v and E, while (2.8), is
the one-dimensional version of the equation that, in two-dimensional flow,
is the irrotationality condition and (2.8)3 is the equation of conservation of
mass. The boundary conditions (2.9) are consistent with (2.8)s, the constant
C having the value of the mass flow at the channel inlet. The conservation of
momentum equation is satisfied implicitly by forcing the energy E to satisfy
(2.7).
The natural conditions of the ‘t’ principle (2.4) are given by

rg—¢' =0,rq+E=0, (BQ) = 0in (z.,z,),

CB.—@QB=0atz ==z, and z = z,,

which are identical to (2.8) and (2.9), if the definition (2.1) is invoked.

In practice the constants C and E are calculated from given values of two
of the three variables depth, velocity and mass flow at the inlet boundary.
Given the values of two of these variables at z = 2. the value of the third
can be deduced from (2.1). Then C = Q(z.) and, using (2.2) and (2.7),
B = gd(ze) + 1/20(x.)* - gh(z.).

Using (2.2) to substitute for d in (2.1) gives @ = (E — 1/2v?)v/g. By
considering ¢) as a function of v for constant F it can be seen that ¢} has



the maximum value Qx = (2E/3)%/g. Thus, for a continuous flow to exist,
the constants C' and F must satisfy

o

CB. < é <§(E + gh(w))f B(z) for @ € [a., 4], (2.10)

using conservation of mass.

Hydraulic jumps may occur when conditions are imposed on the flow at
the outlet boundary which cannot be achieved by a continuous flow. The
value of the energy E is not conserved at a hydraulic jump, although values
of mass flow Q and flow stress P, defined by P = gd?/2 + dv?, are conserved
(Stoker, 1957).

Let z, € (z.,z,) be the position of the discontinuity. Then the jump
conditions may be written explicitly as

@, =0, [P],, =0and [E], >0, (2.11)

T

where the brackets denote the jump in the value of the quantity on crossing
the point z, from the inlet side to the outlet side. The property (2.11)3 is
used to form variational principles for discontinuous flows.

The version of the ‘r’ principle (2.4) for flow containing a discontinuity,
from Wakelin (1993), is

05(d, Q¢ 25) = 5{[ (@, d) + Fed - Q¢) Bda

Te

+ / (4(Q1d)+ Bod ~ Q&) B da + CB. ($(z0) — ¢(xe))} ~(0,12)

where E(z) = Ee(z) = E. + gh(z) for & € (2e,25) and E(z) = Eo(z) =
E, + gh(z) for z € (z;,x,) for constants £, and FE, such that £, > E,.
The natural conditions of the ‘r’ principle (2.12) are given by

rQ — ¢ =0,rq+E=0, (BQ)' =0in (z.,zs) and (25, 2,),

CB.-@QB=0atz =2, and z = z,,

(BQl,, = 0, (2.13)
(r+ Ed)B],, = O. (2.14)

The last two natural conditions are obtained by assuming that the total
variation in the velocity potential is continuous on crossing the point z,
that is, [6¢ + ¢'6zs]s, = 0, where 8¢ + ¢z, is the first order term in the
expansion of (¢ + 8¢)|,, s,,- By assumption [B];, = 0 and so, using the
definitions (2.1) and (2.2), equations (2.13) and (2.14) are equivalent to the
required jump conditions (2.11); and (2.11),.

For practical implementations it is more convenient to use variational
principles which depend on just one variable. The variations of the two
principles (2.3) and (2.4) for continuous flow can be constrained so that the



resulting principles contain only one variable. Let the variations in (2.3) be
constrained by v = ¢’ and let the variations in (2.4) be constrained to satisfy
conservation of mass, that is, let Q(z) = CB./B(z). Then the resulting
‘p’ principle depends on ¢ alone and the resulting ‘r’ principle depends on
d alone. Similarly the ‘c’ principle for discontinuous flow (2.12) may be
constrained, by conservation of mass, to give a principle which depends on
the one flow variable d and on the position of the discontinuity z,. This is
described in the following sections.

3 TUse of the constrained ‘r’ principle

The ‘r” principle (2.4), with variations constrained to satisfy the conservation
of mass equation, is now used to generate approximations to the depth of
fluid for shallow water flows in a channel.

The constrained ‘r’ principle is given by

6J1(d) =6 {/ ’ (r(Q,d)+ Ed)Bdav} =0, (3.1)
where @ and E are known functions of z, namely,
CB.
Q(z) = B2) for z € [z, z,), (3.2)

from the conservation of mass constraint, and
E(z) = E + gh(z) for z € [z, z,], (3.3)

corresponding to conservation of momentum.

The method used here for generating approximations to d is to substitute
finite element expansions for d into the functional of (3.1) and to find the
parameters of the expansions for which J; is stationary with respect to
variations in those parameters.

Let the interval [z.,z,] be divided into n — 1 regular intervals by the
points z1,...,Z, given by

xi:((—:b_—ll))(a:o—xe)-l—xe f= 1 e i (3.4)
Let ay(z),...,an(z) be finite element basis functions, defined on the grid
given by (3.4), and let

dM(z) = idiai(w) (3.5)

be the approximation to d, where the d; (¢ = 1,...,n) are parameters of the
solution, to be determined.
Consider the finite dimensional version of the functional in (3.1),

I(d) = /: ((@,d") + Ed*) B da,

1



where d = (dy,...,d,)T and @ and E are given by (3.2) and (3.3).

The parameters d for which (3.5) is an approximation to d are taken to
be those for which L is stationary with respect to variations in d. They are
found by solving the non-linear set of equations

Tn

Fi(d) = ‘9L:/ (rp+ E)aiBds =0 i=1,...,n,  (3.6)
0d; .

where 741 = rq(Q,d").

Generally there is more than one solution of the set of equations (3.6).
One possible solution involves negative values of d; and is not considered s-
ince it has no physical meaning. In the case of approximations to non-critical
flows there are two other solutions — one which approximates subcritical
flow and one which approximates supercritical flow. In the case of flows
which become critical at a point in the domain there is a further possibility,
that is, an approximation to transitional flow.

In the present work (3.6) is solved using Newton’s method. The Jacobian
J is given by

OF; 9%L Tn
1@ =0 =Gt} = {agaa) = L[ reweasma} 67

and is the Hessian of L.
Given an approximation d* to the solution d, Newton’s method provides
an updated approximation

dFt! = d* + 6d*, (3.8)

where
J(d*)édF = —F(d"). (3.9)
This yields a sequence of approximations to d. The process is repeated until
max ‘6df < tolerance. (3.10)
Then d; = df’ for i =1,...,n are taken to be the values of the parameters in

the approximation (3.5) which make L(d) stationary. The Jacobian J and
the vector F are calculated using five point Gaussian quadrature, where it is
assumed that the error introduced by the numerical integration is sufficiently
small that the finite element solution, for the chosen tolerance in (3.10), is
unaffected.

;From (3.7) J has the form of a weighted mass matrix, where Brgngn
is the weight function. Using (2.6) it can be seen that rqg = Q%/d° — g.
Thus, if the approximate solution in [z1,z,] is subcritical throughout the
Newton iteration, J is negative definite and the solution of (3.6) maximises
L. Alternatively, if the approximate solution is supercritical in [z, z,] for
all iterations, J is positive definite and the solution of (3.6) minimises L.

Thus, given values for £ and C, it is possible, using Newton’s method,
to generate finite element approximations to the depth of flow in a chan-
nel for continuous flows which are either supercritical in the whole domain



or subcritical in the whole domain. The success of the method relies on
choosing the initial approximation d® to d such that the approximations
d*, calculated from (3.8) and (3.9), have either all subcritical components
or all supercritical components. For each set of conditions, E and C, two ap-
proximations will be generated — one corresponding to subcritical flow and
the other to supercritical flow; the choice of d° determines which solution is
found by the algorithm.

If the flow for which an approximation is being sought includes both
subcritical and supercritical motion or if an approximation at an iteration
step has both subcritical and supercritical values, the Jacobian is indefinite
and Newton’s method will generally fail to converge to the solution.

The algorithm is implemented on the equi-spaced grid given by (3.4),
with z, = 0, z, = 10 and » = 21. Two sets of basis functions are con-
sidered; the first, af for ¢ = 1,...,n, leads to continuous piecewise linear
approximations and the second, af for ¢ = 1,...,n — 1, gives discontinuous
piecewise constant approximations. The basis functions ot are chosen to be
the linear functions

Tg — &
! - z € [21, 2]
ay(z) = Ty — 21 »
0 T & [z1, 2]
il T € [Zi—1,T)
! xl:_ Ti-1 '
a(z) = § ZHLTT 4 e la; ain] i=2,...,n—1(3.11)
Ti+1 — 24
0 T ¢ [mi—1,$i+1]
T —Tpn-1
—_— T € i
oh(e) = { Tn—gea ©C Lol
0 T [Tn_1,Ty]

and af to be the piecewise constant functions

crn )1 ze(ziziq) .
ai(:v)_{ 0 o ¢ (i mi11) i=1,...,n— 1 (3.12)

For the basis functions defined by (3.11), J is tri-diagonal and (3.9) is
solved quickly for 6d* using Gaussian elimination and back substitution.
For the basis functions defined by (3.12), J is diagonal and (3.9) is easily
solved.

The method is used to find approximations to flows in a number of
different channels. Several breadth functions are considered. These are

T — T,

k
Bix(z) = 6+4 (1 ={7 ) in [ze, ), for k = 2,4,6,%3.13)

To — Te

Byo(z) = { 2118: Ei;a% E %zf;i]] , for o = 2. (3.14)

To—V

Moving the reference level for potential energy from z = 0 to 2 = —h(z,)
is equivalent to redefining the equilibrium depth to be h(z) := h(z) — h(z.),



so that h(z.) = 0, and the constant E to be E := E 4 gh(z.). For conve-
nience this is now assumed to be the case. The equilibrium depth functions
considered here are

hi(z) = 0 in [ze,2,), (3.15)
ho(z) = H—— in [z, zo). (3.16)

The energy E is given the value 50. In order to guarantee that a contin-
uous solution exists the value of mass flow at inlet C' must satisfy

oot ()

in [ze, 2o,

g 3 B,

from (2.10). For the case h(z) = hy this is just

-y 2
i 2 .

¢ < L(2E)* Buin
—g\ 3 B,

where
Bin = Lel[]al-lll‘-lr] B(z).

Thus, for the given breadth functions (3.13) and (3.14), C must have a value
such that C' < Cy, where
20
7
A value of C' = C, yields flows which are critical at the point of minimum
breadth. A value of C = 10 is used to give examples of non-critical flows.

The initial approximation d® to the solution d determines whether the
finite element solution is an approximation to subcritical or to supercritical
flow. In practice subcritical approximations are obtained by specifying d? >
d, for i =1,...,n, where d, is the critical depth, that is, the depth of fluid
at a point where gd = v2. From (2.2) and (3.3) d, = 2(E + gh)/(39). In
this example, for h(z) = hq, ds = % ~ 3.33. Supercritical approximations
are obtained by specifying d? < d, fori =1,...,n.

Let the tolerance on the Newton iteration be 1072, Consider the channel
with breadth B(z) = Bj . Using the piecewise linear basis functions (3.11)

Newton’s method converges to the supercritical approximation from the

Cy = (3.17)

initial approximation df = 1 for ¢ = 1,...,n in 15 iterations for critical
flow and 7 iterations for non-critical flow. Subcritical approximations are
obtained, using d? = 4 for ¢ = 1,...,n, in 10 iterations for critical flow and

3 iterations for non-critical flow. Figure la shows the linear finite element
approximations to the depth for the critical and non-critical flows generated
under these conditions. The top two lines are the approximations to the
subcritical flows and the other two approximate the supercritical flows, for
the two values of mass flow at inlet ¢ = 10 and C = C,, where C, is defined
by (3.17). Figure 1b shows a linear interpolation to the breadth function



using the 21 grid points given by (3.4). The sides of the channel are almost
parallel for part of its length at the narrowest part, so the depths of the
two critical approximations are close to the critical depth value for some
distance around the point z = 5.
Figure 2 shows corresponding results for B(z) = By o with v = 7.5.
Using the piecewise constant basis functions (3.12), in the channel with
B(z) = By and h(z) = hq, the supercritical approximation, using df = 1

fori=1,...,n,is found after 14 iterations for critical flow and 7 iterations
for non-critical flow while the subcritical approximation, using d9 = 4 for
i=1,...,n,is found after 10 iterations for critical flow and 3 iterations for

non-critical flow. Figure 3 shows these approximations.

Now consider the channel with B(z) = By, and h(z) = hg for H = 0.2.
Figure 4a shows the subcritical and supercritical piecewise linear approxi-
mations for C = 10 and C = 7.7. The dashed line shows the position of the
channel bed. Notice that the depth profiles are no longer symmetric about
the line ¢ = 5. The breadth By is shown in Figure 4b. With d? = 1 for

¢ =1,...,n the supercritical approximations are found after 6 iterations in
the C = 10 case and 5 iterations in the C = 7.7 case. Using d9 = 4 for
1 = 1,...,n the subcritical approximations are found after 3 iterations in

the C = 10 case and 3 iterations in the C' = 7.7 case.

4 An error bound

Proposition The piecewise constant approximations, defined using (3.5)
and (3.12) and generated from (3.6), converge linearly to the shallow water
depth for wholly subcritical or wholly supercritical flows.

Proof The parameters of the approximation d* are defined as those which
satisfy (3.6), that is,

/n(Tdh+E)a§Bdw:0 i=1,...,n—1, (4.1)
1

where rzn = r4(Q,d"). The exact depth d satisfies the equation
rq+ E =0,

from the definitions of r (2.6), mass flow (2.1) and energy (2.2). Thus

/"(rd+E)a§Bdm=0 i=1,...,n—1. (4.2)

1

Subtracting (4.2) from (4.1) gives

[””(T'dh—’f'd)ade(L’IO i=1,...,n—1,

1

and so -
/ (rgn —rg) Bdz =0 i=1,...,n—1, (4.3)
xr

[}

10



using (3.12).
Both d and d” are differentiable on each interval [z;, ;4] and thus, using
the Mean Value Theorem,

ran =14 = 14(Q,d") — ra(@,d) = (d" = d) ryy(Q, P)lyyr (44

for 6 between d* and d (for each z), where ryy = Q%/43 — g, from (2.6).
Thus if d* and d are everywhere supercritical ryy; > 0 and if d* and d are
everywhere subcritical ryy < 0 in [2;,;41]. Therefore, substituting (4.4)
into (4.3) to give

./;H-l (dh - d) r¢¢(@7¢)|¢=9 Bdz =0,

1

implies that d* — d = 0 at at least one point (say & = &) in (2, zs41) for
wholly subcritical or supercritical flows, since B > 0.
Now d* is constant on [z;,z;11], so, for z € [z;, zi11],

/@ " (o) do = /x * (¢(0) ~ d¥(0)) do = [d(0) — d*(0)]] = d(2) - d*(a).

Thus
/E * (d@) - d*(@)) de = [ ( / " d(0) da>2 i

A
L

2
< (($i+1 = xi)mng |d'|> dz
= (41— z;)° mI@XId’Iz,
where max |d|* =  max _|d'(z)|%.
I; @€ [zs,0i41]
Therefore the square of the Ly error is
Hal—th2 - /m (d—dh)zdm (4.5)
n—1 i
= Z /w " - dh d{l;
n—1 N
< ; (@ip1 — @)° max |d|
< max(zigr — 2i)? e ]Id'|2 D (Tiy1 — i)
% TE[Te,To Pt
= max(Tiy1 — mi)z max < |d'| To— Te),

that is, for a uniform grid,

||d—dh| < Az max |d|(wo—we)2

A4S fL‘e,-'L'o]

where Az = (2. — z,)/(n — 1).

11



critical flows non-critical flows
n % subcritical | supercritical | subcritical | supercritical
3 2-T16.028 x 1071 [ 8.608 x 10~ | 2.687 x 101 | 5.097 x 10~!
5 272 | 1.870x 107 | 3.521 x 1071 | 1.188 x 10~ | 2.654 x 10!
9 2-3 17249 x 1072 | 1.550 x 1071 | 4.882 x 1072 | 1.218 x 10~1
17 | 274 1 3.198x 1072 | 7.249x 1072 | 2.192 x 1072 | 5.772 x 1072
33 | 27% | 1.504 x 1072 | 3.504 x 10~2 | 1.038 x 102 | 2.805 x 10~2
65 | 276 | 7.293 x 1073 | 1.722 x 10~2 | 5.050 x 1073 | 1.382 x 102
129 | 277 | 3.592x 1073 | 8.539 x 1073 | 2.491 x 103 | 6.860 x 10~2
257 | 278 | 1.782 x 1073 | 4.252 x 1073 | 1.237 x 1073 | 3.417 x 1073
513 | 279 | 8.878 x 107* [ 2.121 x 1073 | 6.164 x 10~* | 1.705 x 1073
1025 | 2719 | 4.431 x 10~* | 1.060 x 1073 | 3.077 x 10~* | 8.520 x 10~*
Table 1: L errors for piecewise constant depth approximations.
critical flows non-critical flows
n % subcritical | supercritical | subcritical | supercritical
3 [ 27711178 x10°1 [ 9.217x 102 | 1.087 x 10~2 | 3.975 x 10~
5 | 272 |2.087x1072 | 2.084x%x 1072 | 6.606 x 1073 | 9.668 x 10~°
9 |23 |4.395%x 1073 | 5.122 x 1073 | 1.155 x 1073 | 1.769 x 1073
17 | 2741 9.825x 1074 [ 1.235 x 1073 | 2.842 x 107 | 4.714 x 104
33 | 275 (2.304x107% | 3.135x 10~* | 6.858 x 1075 | 1.249 x 10~*
65 | 278 | 5.595 x 10~° | 7.657 x 1075 | 1.651 x 10~ | 3.976 x 10~°
129 | 2771 1.280 x 10~ | 2.234 x 1075 | 4.401 x 10¢ | 1.453 x 1075

Table 2: L, errors for piecewise linear depth approximations.

Thus for wholly subcritical or wholly supercritical flow the piecewise con-

stant depth approximation converges linearly with n to the solution d.

The L, error is calculated for piecewise constant approximations on grids
with different numbers of nodes for the example B(z) = B, defined by
(3.13), and h(z) = hq, defined by (3.15). The energy E = 50 and both
C = C,, defined by (3.17), and C = 10 are considered. The results are given
in Table 1, from which it can be seen, more especially for larger n, that as
the interval length Az halves the Ly error also halves.

The L, errors for the corresponding piecewise linear approximations are
given in Table 2. It can be seen that the convergence is almost quadratic.

5 TUse of the unconstrained ‘r’ principle

More generally, finite element expansions for the mass flow and the velocity
potential, as well as for the fluid depth, can be obtained using the uncon-
strained ‘r’ principle (2.4). The method used here is a simple extension of

12



the algorithm in Section 3.
Consider the grid defined by the points (3.4), with z. = 0, 2, = 10 and
n = 21. Let

Qh(w) = i@iai(w), dh(a:) = idiai(x) , d)h(x) e i(biai(x) (5.1)

be approximations to the mass flow, depth and velocity potential, respective-

ly, where the o; (¢ = 1,...,n) are finite element basis functions. Substituting

(5.1) into the functional of (2.4) yields the finite dimensional version

" (1@, d*) + Ed* — $M'QM) Bdz+CB. (¢ (zn) - #'(21)) ,
‘ (5.2)

where Q = (Q1,--,Qn)T, d = (dy,...,dn)T, d=(¢1,...,¢n)T and E(z) =

E + gh(z). The parameters Q, d and ¢ are calculated by solving

1(Q.d,¢)= [

a3

oL oL oL
0 0, EYS

9Q: ~  9di
Let the o; be the piecewise linear basis functions o} defined by (3.11).
Then equations (5.3)3 yield

=0 fore=1,...,n (5.3)

—/ i a;QhB dz + CB. (ai(zn) — ai(z1)) =0 i=1,...,n,
z1

which may be rewritten as

2
ZQ]-/ adjejBdz = -CB,,
=1 Y=
i+l Tit1
Z Qj/ a;o;Bde = 0 1=2,...,n—1,
J=i-1 Ti-1
Z Qj/ " ap,ajBde = CB,,
j=n—1 Tn-1

Oor as
AQQ = Cy, (5.4)

where Ag is a constant n X n matrix and Cg is a constant n X 1 vector with
only first and last entries non-zero. The matrix Ag is singular of rank n —1
but, using the boundary condition @1 = C, the solution of (5.4) is unique.
Agq is tri-diagonal and Q is calculated using Gaussian elimination and back
substitution.

Equations (5.3), yield

]’E(Tdh+E)ain$=0 '.f:]_,,,,,n,
7y

which, once Q" is known, can be solved for d* by the method of Section 3.
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Equations (5.3); give

[ on=#)asBds =0 i=1,000m

1
which may be written as

2 Ty T2
Z oF / ala;-B dr = / rohon B dz,
j=1 1 o

1

i+l Tig1 , Ti41 .

Z qu/ a;e;Bde = / rore;Bdz  i=2,...,n—~1,
j:i—l Tyg—1 Ty—1

n Tn Tn

Pa ¢j/ ano;Bde = / ronan B dz,
j=n—1 Tn—1 Tn—1

or as

Ay = Cy, (5.5)
where Ay is an n X n matrix and Cy is an n X 1 vector. Once Q" and d"
are known ¢ can be calculated directly. The matrix Ay is of rank n — 1
and singular but ¢ is a potential function and the important quantity is its
gradient, so one of the values, say ¢1, is specified arbitrarily. This procedure
is equivalent to setting the arbitrary constant in ¢ by assigning its value at
the boundary.

Results for critical flow in a channel with B(z) = By 4, defined by (3.13),
and h(z) = hq, defined by (3.15), are shown in Figure 5. The energy Eis
taken to be 50. The piecewise linear approximation to the mass flow is
shown in Figure 5a. The piecewise linear approximations to the velocity
potential and depth for a supercritical flow are given in Figures 5b and
5¢, respectively. Figure 5d shows the piecewise constant approximation to
the supercritical velocity derived by taking the gradient of the piecewise
linear velocity potential approximation in each interval [z;,z;41] for ¢ =
1,...,n — 1. The Newton iteration to find d* converges after 13 iterations,
using d? = 1 for ¢ = 1,...,n, with a tolerance of 1073,

Corresponding results for the subcritical flow are given in Figure 6. The
Newton iteration converges from d? = 4 for i = 1,...,n in 8 iterations.

Notice that the velocity approximation is not quite symmetric about the
line z = 5, even though the breadth and equilibrium fluid depth functions
are. This is probably a consequence of using approximations to mass flow
and depth in (5.5). By increasing the number of grid points the symmetry
of the approximations can be improved — Figure 7 shows the supercritical
solutions for n = 61.

Thus, although approximations to all of the variables can be generated
using the unconstrained ‘r’ principle, in the case of the velocity potential
(and therefore the velocity) the procedure is not ideal. However another
variational principle exists which depends on the velocity potential alone,
that is, the ‘p’ principle (2.3), constrained by v = ¢'. In using this con-
strained principle to seek an approximation to ¢ (and therefore v) no other
approximations are made and more accurate results might be expected, as
well as the procedure being more direct and cheaper.

14



6 Use of the constrained ‘p’ principle

The ‘p’ principle (2.3), constrained to satisfy v = ¢/, is given by

029) = ¢ { [ n(#, E)Bdo + CB.($(eo) - d(ee))} =0, (6.)
where E(z) = E + gh(z) and the constants E and C are prescribed.

The velocity potential of a shallow water flow is the function ¢ which
satisfles 6J; = 0. The algorithm for generating an approximation to the
velocity potential using (6.1) is similar to that of Section 3.

Let the z; (1 = 1,...,n), given by (3.4), define the grid. Let the finite
element approximation to the velocity potential be given by

#(z) = i@ai(m),

where the o; are the piecewise linear basis functions o} of (3.11) and the ¢;
are parameters of the solution. Thus the finite dimensional version of the
functional of the constrained ‘p’ principle is given by

L(@)= [ p(¢", E)Bda + CB. (¢"(za) — "(a0))
Ty
where E(z) = E + gh(z) and ¢= (¢1,...,¢n)7. The approximation to the
velocity potential is determined by the ¢ which causes L to be stationary,
that is, the ¢ which satisfies

L [on
Fi(¢) = 37 = [ ppectBds + CB.(ai(en) — as(m)) =0 i =1L,
' (6.2)
where p o = p¢/(¢>h',E). The solution of the non-linear set of equations
(6.2) is found using Newton’s method. The Jacobian is given by

oF; %L n .

which is the Hessian of L and has the form of a weighted mass matrix,
with weight pyign B. From (2.5) ppy = (3¢’2/2 — E)/g, so that, J is
negative definite for wholly subcritical flows and positive definite for wholly
supercritical flows.

Given an initial approximation ¢° to the solution ¢, Newton’s method
produces a sequence of approximations ¢F from

¢Ft = ¢* + 69, (6.3)
where
J(¢*) 86" = ~F(¢"). (6.4)
The sequence ends when
max|6q§i-c < tolerance. (6.5)
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The Jacobian and the vector F are integrated exactly. The Jacobian is tri-
diagonal and (6.4) is solved by Gaussian elimination and back substitution.
The initial approximation ¢° is given by

¢ =(i—1)° i=1,...,n,

where v° is assigned a value which determines whether the approximation
being calculated is an approximation to subcritical or to supercritical flow.
Let cmin = MiNgey, o,]¢x, Where ¢, is the critical velocity, cx = v/gdi =
V2E]3. Then, if v° < ¢®®(z, — z;)/(n — 1), the approximation will be
subcritical. Let ¢*** = maX;e(q, z,¢+. Then, if 00 > X (g, —z1)/(n—1),
the approximation will be supercritical.

The algorithm is implemented on the grid (3.4), with z, = 0, z, = 10
and n = 21. The energy E is again taken to be 50. Approximations to flows
in channels with breadths given by (3.13) and (3.14) and fluid depths below
the level z = 0 given by (3.15) and (3.16) are considered.

For h(z) = hy the value of mass flow at inlet C' = C,, where C is given
by (3.17), is used to give examples of critical flows and C' = 10 is used to
give examples of non-critical flows.

Consider the channel with breadth B(z) = Bjg and let the tolerance
in (6.5) be 1073, The method converges to the subcritical approximation
in 4 iterations, using v* = 1, and to the supercritical approximation in 5
iterations, using v° = 5, for non-critical flows. For critical flows the method
converges to the subcritical approximation in 7 iterations, using v® = 1, and
to the supercritical approximation in 8 iterations, using v = 5. Results
for the critical flows are shown in Figure 8. Figure 8a shows the piecewise
linear velocity potential approximations, the top line corresponding to su-
percritical flow and the bottom line to subcritical flow. Figure 8b shows the
piecewise constant velocity approximations derived from the gradients of the
velocity potential approximations in each element. Notice that this time the
velocity approximations are approximately symmetric about the line 2 = 5
as is expected for flows in a channel whose breadth and equilibrium depth
functions are symmetric about this line.

For B(z) = By and h(z) = hy with H = 0.2 Figure 9a shows the
piecewise linear approximations to the velocity potential for subcritical and
supercritical flows with C' = 10. The corresponding piecewise constant
approximations to the velocity are given in Figure 9b.

The L4 error of the approximations to the velocity is defined by

- (/: (v—¢h/>2dz‘)%.

Table 3 shows the L, errors for piecewise constant velocity approxima-
tions in the channel with B(z) = By, and h(z) = hy. The energy E is
given the value 50, C = C,, defined by (3.17), is used to derive the critical
approximations and C' = 10 is used to give the non-critical approximations.
It can be seen that, as the grid is refined, the convergence of d)h' to v is
linear.

o=
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critical flows non-critical flows

n % subcritical | supercritical | subcritical | supercritical

3 2-1 13266 x 109 | 2.744 x 10° | 1.933 x 10° | 1.444 x 10

5 2-2 1 1.582x 10° | 1.352x 10° |8.914 x 10~! | 6.549 x 10!

9 2-3 | 7.782 x 107! | 6.653 x 10~! | 4.449 x 10~ | 3.261 x 10!
17 | 271 [ 3.861x 107! | 3.296 x 107! | 2.227 x 107! | 1.632 x 10~}
33 | 275 [1.923x 107! | 1.640 x 10~! | 1.114 x 107! | 8.164 x 1072
65 | 276 [ 9.597 x 1072 | 8.179 x 1072 | 5.569 x 10~% | 4.082 x 1072
129 | 277 | 4.794 x 1072 | 4.084 x 1072 | 2.784 x 10~% | 2.041 x 1072
257 | 278 | 2.396 x 1072 | 2.041 x 1072 | 1.392 x 1072 | 1.021 x 1072
513 | 279 | 1.198 x 1072 | 1.020 x 102 | 6.961 x 1073 | 5.103 x 1073
1025 | 2710 | 5,987 x 1073 | 5.100 x 10~3 | 3.481 x 10~2 | 2.552 x 102

Table 3: L, errors for piecewise constant velocity approximations.

7 Use of the constrained ‘r’ principle for discon-
tinuous flows

In this section the ‘r’ principle (2.12), constrained to satisfy the conserva-
tion of mass equation, is used to generate approximations to the depths in
discontinuous shallow water flows. In order to achieve an accurate finite ele-
ment approximation to the depth, one of the grid nodes must be positioned
at the point of discontinuity; this requires the use of irregular grids.

The functional of the ‘r’ principle for discontinuous flow (2.12), con-
strained to satisfy conservation of mass, is

Ja(d, a) :/ (r(Q,d)+ E.d) B de +/ (r(Q,d)+ E.d) Bde, (7.1)
where Q(z) = CB./B(z). The equilibrium fluid depth A is assumed constant
so that the energy E, defined by (2.2), has the constant value E. in [z, ;)
and the constant value E, in (z,2,]. The values of E, and E, are deduced
from boundary conditions and, from (2.11)s, are such that £, > E,. The
natural conditions of the first variation of J3 are

rq+ E. = 0 in (z.,zs),
ra+ E, = 0 in (z;,2,), (7.2)
[r + Ed],,

The method of finding approximations is based on that of Section 3 in
that finite element expansions for d in the regions of the domain before
and after the discontinuity are substituted into a finite dimensional version
of (7.1). As the iteration proceeds the node which separates the pre- and
post-discontinuity approximations is repositioned in order to satisfy (7.2)s.

Let the domain of the problem [z.,z,] be divided initially into n — 1
adjacent regular intervals [z;, z;11] by the points z; (i = 1,...,n) defined by
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(3.4). One of these nodes must be chosen as being the initial approximation
to the position of the discontinuity and the number of the node nearest to
the actual position of the hydraulic jump is needed for this purpose (see
below). Let 2y be the initial guess for the jump position.

The method requires that approximations to the flow in front of and
behind the jump are generated separately and coupled, by means of a dis-
continuity, at the position of the hydraulic jump.

Let the approximation to the depth in the pre-jump region [z,,zn] be

N
d*(a) = 3 dfai(a),
=1
where
g — T
af(z) = { S
0 z & [z1, 2]
T — T
——— € [5i1,3]]
e P
aj(z) = ST g€ [, wig) =2,...,N -1,
Titl — @
0 & [zio1, Ti1)
T —TN—
. SN 4 [zN-1,2ZN]
ay(z) = IN — TN_1 ,
0 z & [zN_1,2N]

and let the approximation to the depth in the post-jump region [zn, Z,)
be

n

d(z) = ) diag(2),

=N
where
TN41 — T
— T E|TN,TN+1
Ol?v(.'l?) = TN — TN [ ) + ] ,
0 &[N, TN+1]
% T € [Ti-1,2i
1 - S—
al(z) = Tit1 — 2 € [2i, Tit1] t=N+1,...,n—-1,
Tig1 — T4
0 ¢ & (21, i)
T — Tp—1
—— T E|(Tp_1.Z
ad(z) = Ty — Tp—1 [@n-1,2n] )
0 T & [Tn-1,2n)

The algorithm is in two parts. Firstly the two finite element approxima-
tions d¢ and d° are derived by finding the values of d® = (d5,...,d%)" and
d° = (d%,...,d3)! such that

I(d°,d°) = /mN (r(Q, d°) + E.d°) Bdz + /x (7(Q,d°) + E.d°) B dz

Z1
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is stationary with respect to variations in d® and d°. This requires solving
the two sets of equations
oL oL

%:0 t=1,...,N and 90

I3 1

using Newton’s method, as described in Section 3. The initial approximation
to d® must be supercritical in order that the supercritical flow in the region
before the jump is approximated and the initial approximation to d° must
be subcritical.

The second stage of the algorithm is to alter the position of zy by
employing the jump condition (7.2)s. If 2, is the exact position of the jump
and d is the exact solution then, from (7.2)s,

(1@, d)+ Bed)l,_ — (r(Q,d) + o), =0,

where — denotes the z. side of z, and + the z, side of z,. If the approxi-
mation satisfies

|((Q,d%) + Eed)l,, — (1(@,d°) + Bod®),,,

< tolerance, (7.3)

for some specified tolerance, then the approximate solution has been found
and zy is the approximate position of the hydraulic jump. If (7.3) is not
satisfied then a new approximation to the jump position is found using the
jump condition, as follows.

The equation

m(Qs,d%) + Eedfy — r(Qs,dy) — Eodly = 0 (7.4)

is solved for s, the value of the mass flow which would occur at the jump
if d; and d$; were the actual depths of the flow before and after the jump.
The conservation of mass constraint gives

Q(z)B(z) = CB, T € [21,Zn)

and, since B(z) and C are specified, this can be used to find the point 2%
in the channel where the mass flow is @,;. Ounly flows which are critical at
the channel throat will be considered so that

_ CB.
@s
can be solved, by bisection, to give a unique value for z¥.
The process which occurs on solving (7.4) is explained in detail in Wake-
lin (1993). The main point is that the iteration procedure of repeatedly
solving (7.4) and (7.5) and generating depth approximations can be shown
to converge, under certain conditions, as follows.
Let d¢ be the exact supercritical depth corresponding to the energy F =

E. and the mass flow Q = Q(zn) = CB./B(zn) and let d° be the exact
subcritical depth corresponding to £ = E, and @ = Q(zn). Then, if

B(zM) (7.5)
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dyy = de and dy = de and provided that the value of @}; obtained on first
solving (7.4) has a solution 2! in the domain, the iteration for z&¥ can be
shown to converge to give the position of the dlscontmmty The result also
holds if d; and d%; are sufficiently accurate approximations to de and d°,
respectively.

The algorithm for positioning a node at the jump is in two parts. Firstly,
beginning with N = n — 1, the corresponding value of 27! is found using
(7.4) and (7.5). Then, stepping backwards along the channel to the n — 2
th node, the value of 272 is found. If (z,_1 — 27 1) (2p-2 — 277%) < 0
then z, lies between z,_; and z,_,. Otherwise the process is repeated
until the node 7 is found, where (z; — 2%)(z;—1 — @J7') < 0. Then, if
|e; — 21| < |zj—1 —2{7!|, the number N of the node to be moved to the
jump position is j; otherwise N = 7 — 1.

Once the number of the node to be moved to the jump position has been
established in this way, &y is moved to 2. The finite element approxima-
tions d® and d° are recalculated on the modlﬁed grid and, if (7.3) is still
not satisfied, (7.4) and (7.5) are used to reposition zn and the process is
repeated until (7.3) is satisfied. The approximate solution has then been
found and z is an approximation to the jump position.

The algorithm is applied to a grid with z. = 0, z, = 10 and n = 21.
The energy at inlet E, is given the value 50 and the mass flow at inlet
C = C,, where C, is defined by (3.17), to give a critical flow in a channel
with breadth B(z) = Bk, defined by (3.13). The depth at outlet d, is given
for each case and is used to deduce the value of E,, using the definitions of
mass flow (2.1) and energy (2.2). ;From the conservation of mass equation
Q(z,) = CB./B(x,), which yields E, = gd, + (CBe/(B(20)d,))* /2.

The piecewise linear approximation to the discontinuous depth profile
with d, = 4.69 and breadth B(z) = B¢ is given in Figure 10a. For a
tolerance on the Newton iteration of 1072 and on the jump condition (7.3)
of 1073, the method converges in 3 iterations on the position of the discon-
tinuity, once the node to be placed at the discontinuity has been found; in
this case it is node number 16. These iterations require 15, 8 and 8 Newton
iterations. The initial approximation on the original regular grid is given
the values d¢ =1 (¢ = 1,...,N) and d? = 4.69 (4 = N,...,n). Once the
number of the node to approximate the jump position is found subsequent
approximations to the finite element solutions use the approximation on the
previous grid as the first guess in Newton’s method to find the approxima-
tion on the new grid.

The piecewise linear approximation for d, = 3.86 is shown in Figure 100b.
This converges in 3 iterations on the position of node 20, which is selected
by the algorithm to be moved to approximate the jump position, requiring
15, 4 and 4 Newton iterations.
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8 Conclusions

In this paper new variational principles for shallow water flows developed in
Wakelin (1993) are used to determine finite element approximations to depth
and/or velocity functions in several examples of channel flows with variable
cross-sections. Approximations to both continuous and discontinuous flows
are given and convergence of the procedure is demonstrated by reference to
a typical case.

The variational principles considered in this paper are only a subset of the
variational principles for shallow water flows described in Wakelin (1993). In
particular, two further variational principles exist whose natural conditions
are the equations of steady quasi one-dimensional motion. However, those
principles do not have the useful property of the ‘p’ and ‘r’ principles, (2.3)
and (2.4), where the variations can be constrained to obtain principles which
depend on just one variable. Other sets of variational principles exist for
the cases of steady shallow water flow in two dimensions and for both quasi
one-dimensional and two-dimensional unsteady flows.

The variational principles for steady two-dimensional motion and un-
steady quasi one-dimensional motion are used in Wakelin (1993) to obtain
approximate solutions of the shallow water equations. The method in the
case of two-dimensional steady motion is an extension of the method giv-
en in this paper, that is, the variables of the motion are taken to be those
functions for which the functionals of the variational principles are station-
ary with respect to variations in a finite dimensional space spanned by a
set of piecewise linear basis functions defined on a triangular grid. In this
way, piecewise linear approximations to the depth and velocity potential and
piecewise constant approximations to the velocity are obtained.

The same method is also applied to the variational principles for quasi
one-dimensional unsteady motion but is only of limited use. This is because
the structures of the variational principles for unsteady flow require that the
solutions at the beginning and end of the time interval are given functions,
thus the solution at the final time needs to be known before the problem
can be solved using this method. One possibility is to consider a very long
time interval and to set the boundary functions at the final time equal to
the asymptotic solutions, given as the time tends to infinity. However, this
would be computationally expensive because of the size of the domain which
would be necessary to accommodate a sufficiently long time.
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Figure 1: a) Piecewise linear depth approximations for b) By e(z).
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Figure 2: a) Piecewise linear depth approximations for b) Bj2(z) with v = 7.5.
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Figure 3: Piecewise constant depth approximations for By ¢(z).
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Figure 4: a) Piecewise linear depth approximations for B(z) = B; ; and h(z) = h,
with H = 0.2 and b) Bm(z).
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Figure 5: a) Mass flow, b) velocity potential, c) depth and d) velocity approxima-

tions for B(z) = By,4 — supercritical case.
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Figure 6: a) Mass flow, b) velocity potential, ¢) depth and d) velocity approxima-

tions for B(z) = B, 4 — subcritical case.
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Figure 8: a) Velocity potential and b) velocity approximations for B(z) = B¢
and h(z) = h;.
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Figure 9: a) Velocity potential and b) velocity approximations for B(z) = B,
and h(z) = h, with H = 0.2.
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Figure 10: Piecewise linear depth approximations for a)d, = 4.69 and b) d, = 3.86.



