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Abstract Techniques for the robust design of automatic feedback controllers and state
estimators for systems governed by implicit linear dynamic—algebraic equations are
investigated. Two computational procedures for achieving robust designs are presented:
singular value and eigenstructure assignment. The procedures are based on stable
decompositions of the system matrices using unitary transformations.

1. INTRODUCTION

Many control systems that arise in practice can be described by implicit
dynamic—algebraic equations of the form

EE = Ax(t)+Bu(t) (1)
y(t) = Cx(t) (2)
or, in the discrete—time case, of the form
E x(k+1) = A x(k) + B u(k) (3)
y(k+1) = Cx(k+1). (4)

Here the vector x € 2" defines the state of the system at time t (or ty), ue 2" is

the control or input to the system, and y € 2P is the measured output from the
system, where m, p < n. It is assumed that the matrices B, C are of full rank. The
matrix E may be singular. Examples of such systems, called descriptor or generalized
state—space systems, occur in a variety of contexts, including aircraft guidance, chemical
processing, mechanical body motion, power generation, network fluid flow and many
others.

The behaviour of a descriptor system is governed by the generalized eigenstructure
of the matrix pencil

aE—fA, (o,pP)€ €x¥. (5)

The response of the system can have a complicated structure and may even contain
impulsive modes. Numerical methods are needed to assess the properties of these
systems and to aid system design. The main computational technique used for both
system analysis and design synthesis is the reduction of the system by unitary
transformation to a condensed matrix form. Such forms reveal both the structure of the
system and the degrees of freedom available for the design. The synthesis problems are
generally under—determined, and it is desirable to select the free parameters to give
robust designs that are insensitive to plant disturbances and model uncertainties.



In this paper we examine two computational tools for achieving robust designs —
eigenstructure assignment and singular value assignment. These methods are used in
solving two basic synthesis problems: the design of automatic controllers by
proportional—plus—derivative feedback and the design of observers (or state—estimators)
for estimating the states of the system from measured data. In the next section we
define the basic design synthesis problems. In Section 3 we examine properties of the
system. In Sections 4 and 5 we develop robust design procedures based on singular
value and eigenstructure assignment, respectively. Conclusions are given in Section 6.

Throughout the paper we consider continuous—time systems of form (1)—(2) only.
All the results presented here also hold, however, with minor modifications, for
discrete—time systems (3)—(4).

2. CONTROL SYSTEM DESIGN

The aim of a feedback controller is to ensure that the system responds automatically in
a required manner to any given reference input. This is achieved by altering the sytem
dynamics by ‘feeding back’, through the control input, information on the current state
of the system, thus creating a new ‘closed—loop’ system.

If all the states x of the system (1)—(2) and their derivatives X can be measured
(i.e. C=1), then a full proportional—plus—derivative state feedback can be used. The
input to the system is taken to be

u=Fx-Gx+r, (6)

where F,G € @™ " are the feedback matrices to be selected and r € ®" is the
reference input vector. Substituting for u in (1) and rearranging gives the closed loop
system equations

(E+ BG)x = (A + BF)x + Br. (7)

The matrices F and G must be chosen to ensure that the new closed loop matrix
pencil

o(E + BG) — f(A + BF) (8)
has the desired properties.

In practice all of the states of a system cannot generally be measured. In this case
an auxilliary dynamical system, known as an observer, or state—estimator can be

constructed to provide estimates X for all the states x of the system (1)—(2) from the
measured data y:

E% = A% + Bu + F(Ci—y) — G(Ci~y) . 9)
The observer is driven by the differences between the measured system outputs and

their derivatives y and y and the estimated values Cx and Cx. Rearranging (9)
gives the system equations for the observer

(E + GO)k = (A + FC)k + Bu—TFy + Gy (10)



with the system pencil

ofE + GC) — (A + FC) . (11)

The matrices F, G € ™" P must now be selected to ensure that the response of the

observer x(t) converges to the system state x%t) for any arbitrary starting conditions,
that is, system (10) must be asymptotically stable. The convergence should be rapid and

the converged estimate x should then track the true state x closely.
We remark that the design of an observer is equivalent to the design of an
automatic controller for the dual system

Eé = Ae+ v
w = Ce,

using a feedback of the form

v=Fw-Gw+r.

The corresponding closed loop system is

(E+ GC)é = (A+FCle+r

with system pencil given by 511), which is equivalent to the observer (10) with an
appropriate choice for the reference r. ‘

An automatic controller for the state system (1)—(2) can be obtained in the case
C # I by combining the system (1) with the observer system (10) and feeding back the

estimated states X and derivatives X. A closed loop system of twice the dimension of
the original system is derived. The over—all response of the closed loop system is
controlled by selecting the free matrices in both the observer and the controller
appropriately.

Alternatively a controller for the system (1)—(2) where C # I can be obtained by
‘feeding back’ the measured output data directly. The input is taken to be

u=Fy—-Gy+r=FCx—-GCx+r, (12)

giving the closed loop system

(E + BGC)x = (A + BFC)x + Br. (13)

The response of the closed loop system is determined by the properties of the matrix
pencil

o(E + BGC) — §(A + BFC) . (14)
The results that may be achieved by selecting the feedback matrices F,G € #™*P are

now restricted, however, in comparison with those that may be achieved with full state
feedback.
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In summary, the objective of these system design problems is to choose matrices F
and G such that the matrix pencil (14) has desired properties, which ensure the
appropriate response of the system. The state feedback control problem, where C =1,
and the state estimator problem, where B = I, are special cases. For robust designs it
is necessary to ensure also that the properties of the pencil (14) are insensitive to
perturbations in the system matrices E, A B and C.

In the next section we examine the properties of descriptor systems and formulate
design objectives.

3. PROPERTIES OF DESCRIPTOR SYSTEMS

The descriptor system (1)—(2) and its corresponding matrix pencil (5) are said to be
regular if

det(aE — fA) # 0 for some (a,0) € €x ¥\ {(0,0)} . (15)

Re%u)lar[it]y[of]the system guarantees the existence and uniqueness of classical solutions
to (1) 6] |16].

For a regular system, the solutions to (1) can be characterized in terms of the
eigenstructure of the pencil. The generalized eigenvalues are defined by the pairs

(a4, B;) € €x €\ {(0,0)} such that

det(jE—fiA) =0, j=1,2,3... (16)

If §; #0, then ;= aj/f; is a finite cigenvalue, and if f; =0, then Aj~ o isan
infinite eigenvalue of the system. The right and left generalized eigenvectors and
principal vectors are given by the columns of the non—singular matrices X = [Xj, Xy]
and Y = [Y}, Y] (respectively) that transform the pencil into the Kronecker canonical
form (KCF)

vTEX = [(I)r 191], YIAX = [J 0 ] (17)

where J is the rxr Jordan matrix associated with the r < rank(E) = q finite
eigenvalues of the pencil and N is the nilpotent Jordan matrix corresponding to the
n—r infinite eigenvalues [8]. The inder of the system is defined to be equal to the
degree of nilpotency of the matrix N; that is, the index is equal to k, the smallest

non—negative integer such that N* = 0.
For a regular system, the solution to (1) is given explicitly in terms of the KCF by

X(t) = X Zl(t) + X Zz(t) 5 (18)

where

z(t) = eJz4(0) + fo ") YT Bu(s)ds,  ay(0) € 27

k-1
z5(t) = — 2 NiY]} Bu(i)(t) :



—5—

It is easy to see that for the solution to be continuous, the input function u must be

such that d‘[N1 Y3 Bu(t)] /dt? exists and is continuous forall i=1,2, ...k —1,
where k is the index of the system.

The index of a regular system is k = 0, by convention, if and only if rank (E) = n.
The index k is less than or equal to one if and only if rank [E, ASm] =n or,

equivalently, rank [ET, AT Tm] = n, where the columns of SuJ and Tm span the null

spaces of E and ET, respectively. In this case the pencil has precisely q = rank (E)
finite eigenvalues and n — q non—defective infinite eigenvalues [7], [10].
An example of a regular system of index one is given by the semi—implicit equations

En O] [x1] _ [Au A2 [ x1 By
[0 0] [Xz] B [A21 Ap) x| T[B " (19)
where E;; and A, are non—singular. The first block row of equations describes the
dynamical behaviour of the system, while the second block row gives algebraic
constraints on the states. For systems of this type, the algebraic conditions can be

eliminated to give a purely dynamical ezplicit linear system. Since Aj, is of full rank,
we may write

-1
xg = —An (Ayxi+ Byu).

Since Ej; is also of full rank, the system (19) then reduces to the explicit system

-1 -1 -1 -1
x; = Ejy(An— A2 Ao Ag))xy + Ey (Bi— Az A2a Bolu.. (20)

We remark that the reduction to explicit form is not numerically reliable if Eq;, Ay are
ill—conditioned with respect to inversion.

Any regular system that has index at most one can, in fact, always be unitarily
transformed and separated into a purely dynamical and a purely algebraic part, and the
algebraic variables can be eliminated to give an explicit system of (possibly) reduced
order. Higher index descriptor systems cannot be reduced to explicit systems in this
way, and impulses can arise in the response if the control is not sufficiently smooth.

The system can even lose causality [15] [4]. The eigenstructure of higher index systems
is also necessarily less robust with respect to perturbations than systems of index at
most one, since higher index systems always have defective multiple eigenvalues at
infinity [10].

It is desirable, therefore, to design systems that are regular and of index at most
one. In practice, there exist physical systems that do notf have these properties. Such
systems can, however, often be made regular and of index at most one by appropriate
choice of feedback designs. Systems that are regular and of index at most one can, on
the other hand, lose these properties under linear feedback. It is important, therefore, to
establish conditions that ensure regularity/index < 1 under feedback, and to develop
numerically reliable techniques for constructing regular systems of index at most one.

In the next section we give algebraic conditions that enable the regularization of a
system by feedback, and describe a singular value assignment technique for designing
robust systems that are regular and of index at most one.

Regularity and index < 1 are not sufficient properties to define a satisfactory
design, however. In general, we also require the system to be asymptotically stable; that
is, we require the response of the system to a constant reference input to converge
asymptotically to a constant state of equilibrium from any intitial state. This property
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holds if the finite eigenvalues of the system lie in the left—half complex plane (see [5]).
In order to "shape" the response more explicitly we may wish to assign a specific set of
gstable) eigenvalues to the system, thus guaranteeing a given modal behaviour. In

ection 5 we describe methods for achieving robust eigenstructure assignment by
feedback. The algebraic "regularizability" conditions given in Section 4 are sufficient to
enable the system to be made stable as well as regular and index < 1, and to permit
arbitrary assignment of the finite eigenvalues of the system.

For full flexibility a combination of the singular value and eigenstructure

assignment techniques can be used in practice to obtain closed loop system designs.

4. REGULARIZATION BY SINGULAR VALUE ASSIGNMENT

The aim of the system design problem is now:

Given real system matrices E, A, B, C, select real matrices F and G such that
the closed loop pencil

o(E + BGC) — (A + BFC) (21)
18 regular and has indez less than or equal to one.
The pencil (21) has the required properties if and only if
E + BGC

=n, (22)
T} (A+BFC)

rank

where the columns of T span the null space of (E + BGC)" [10]. For a robust

solution to the problem we want the closed loop system to retain these properties under
reasonable perturbations. We aim, therefore, to select matrices F and G to ensure
that the matrix in (22) is as far from losing rank as possible under perturbations that
preserve the range space of Tm. Such perturbations preserve the space of admissible

controls (see [5]).

It is well-known that for a matrix with full rank, the distance to the nearest matrix
of lower rank is equal to its minimum singular value [9]. Hence, for robustness, we
select F and G such that the pencil (21) is unitarily equivalent to a pencil of the form

Z, 0 AitAy,
a _ﬁ )
0 0

An S,
where the condition numers cond (%;) and cond (¥,) are minimal. This choice
maximises a lower bound on

Y. 0
Omin { AI;'1 EL jI} £ Omin { } ) (24)

whilst retaining an upper bound on the magnitude of the gains F and G. This choice

(23)

E + BGC
T” (A+BFC)
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also ensures that the reduction of the closed loop descriptor system to an explicit
(reduced order) system, as described in the previous section, is as well—conditioned as
possible. In practice such robust systems also have improved performance
characteristics (see &12] [14]).

The existence of solutions to the design problem can be established under simple
conditions. The proof is based on a unitary transformation of the system to a condensed
form that reveals both the structure of the system and the degrees of freedom available
in the design. In the next subsection the conditions for regularizability are given,
together with the main result. In the following subsections, the condensed system form
is presented and a technique for selecting a robust solution to the design problem is
described.

4.1 Conditions for Regularizability

Algebraic conditions that ensure regularizability of the descriptor system (1)—(2) are
given by the following:

Cl: rank[dE—A,B] = n forall A€,
C2: rank [E, ASw, B] = n, where the columns of Sm span the null space of E ;

01: rank )‘E—C_A] =n forall \€g;
[ E
02: rank Tz A | = n, where the columns of Tm span the null space of ET.
C

For systems that are regular, these conditions characterize the controllability and
observability of the system. The conditions C1/C2 and 01/02 guarantee that a
regular system is strongly controllable and strongly observable, respectively. The
conditions C1 and 01, together with the stronger conditions

rank [E, B] = n, rank [ET, ¢’ =n (25)

uarantee that a regular system is completely controllable and completely observable (see
16] [1] [2]). The conditions C2 and 02 ensure ‘controllability and observability at
infinity’ (see [15]). A regular system that has index at most one always satisfues C2
and 02.

The conditions C1, C2, 01 and 02 are all preserved under certain transformations
of the system. Specifically, these conditions are all preserved under non—singular
‘equivalence’ transformations of the pencil and under proportional feedback. The
conditions C1 and 01 are also preserved under derivative feedback [1] [4].

The key result is given by the following:

THEOREM 1 Given the real system matrices E, A, B, C, then C2 and 02 hold if
and only if there ezist real matrices F and G such that

o(E + BGC) — A(A + BFC)

is regqular with indezx at most one and



rank (E + BGC) = 1, (26)

where rank(E) <1 < s =rank(E) + to. (Here ty is an integer determined by the
decomposition of the system given in Theorem 2).

If C1 and Ol also hold, then F and G can be selected to ensure, in addition, that
the corresponding closed loop system 1is strongly controllable and strongly observable.

Proof. The proof follows by construction from the condensed form given in Theorem 2
of Section 4.2 [2]. )

We remark that the value of s in Theorem 1 is equal to n, the system dimension,
if and only if the stronger conditions (2(2 hold [2]. In the spec1a1 cases where C =1
(the state feedback control problem) an =1 (the state estimator problem), the

value of s is given by s = rank [E, B] and s = rank [ET, CT}, respectively [1].

The value r =8 in Theorem 1 is attained in all cases by the feedback G alone,
with F = 0. The value r = rank E is attained by feedback F alone, with G = 0. If
C2 and 02 hold, solutions such that r < rank(E) may also exist, but the converse of
the theorem does not necessarily hold [2].

4.2 A Condensed Form
The main result in Section 4.1 depends on the following.

THEOREM 2 Given real system matrices E, A, B, C, there exist unitary matrices
U, V,W,Z such that

U'EV = 3, 0], U'BW = [By By
0 0 By 0
z'cv = [Cy Cw], UMAV = [Ay Ap
| C21 0 Ay An (27)
where
Agg = [Agy Agg Ay 0 0] By = [By]
Ass Ajzz Az Y35 0 Bj
Agg Ay 244 0 O
0 Y53 0 0 O
0 0 0 0 o]
Cpp =[Cp Ci3 0 0 0 (28)

and EE, Y35, La4, U553 are non—singular, square diagonal matrices of dimensions ty, t3, t4
and ts, respectively. Bys and Coqy are of full rank, and
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l B21] and [ 012, C13 ]
Ba;

are non—singular, square matrices of dimensions t; + t3 and sy + ts, respectively. (Al
partitionings are compatible.)

Proof The proof is by construction via Algorithm 1 given in [2). The construction uses
a sequence of singular value (SVD) decompositions [9]. O

From the condensed form (27)—(28), it follows that the system pencil oE — fA is

regular and of index at most one if and only if the matrix A, is non—singular.
Necessary and sufficient conditions for this to hold are that the last zero block rows and

columns of Ag, (and corresponding blocks of Ajy, Ayz) are empty (so that tz = s3)
and the square matrix Ajjis non—singular.
From Theorem 2 it also follows that conditions C2 and 02, respectively, hold if

and only if the last zero block rows and last zero block columns of Ag; and Bgy, Cyy,
respectively, are empty (together with the corresponding blocks of Ajy, Asg).
Furthermore, if these conditions hold, then it can be seen from the condensed form
(27)—(28) that feedback matrices F and G can be constructed such that the closed
loop pencil (21) is unitarily equivalent to a pencil of form (23), where Y ¥, are square

and non—singular and ¥, is rxr with rank % <r<s=1;+1; (for details see [2]).

These results, together with the fact that the conditions C1, C2,01 and 02 are

preserved under equivalence transformations, effectively establishes Theorem 1.
In the next subsection we examine how the feedback matrices F, G can be

constructed explicitly to give a robust solution to the regularization problem.

4.3 Robust Singular Value Assignment

To obtain a system pencil that is regular and of index at most one, the matrices F and
G can be selected such that the pencil (21) is unitarily equivalent to a pencil of form
(23) provided certain algebraic conditions hold, as described in the previous subsections.
For a robust system design, we choose F and G to assign the singular values of the
subsystems %, % in the equivalent system (23) to ensure that

cond (ER) = omax{ER}/amin{ER} , cond (%)= omax{% }/onin{Z; }

are as small as possible, and also to ensure reasonable gaps between singular values.

In general, not all singular values can be assigned arbitrarily. In the case of the
state feedback controller and its dual, the state estimator problem, where C =1 and
B =1, respectively, the complete singular value structure can be identified and an
optimal solution can be found to the robust regularization problem. To establish the
form of the optimal solution in the case C = I, it is convenient to reduce the form
(27)—(28) still further. In this case, assuming C2 holds so that t3=0=s¢ and
ty =85, we find that t3 = 0 = t4 and, therefore, the third, fourth, and sixth block rows
and fourth, fifth and sixth block columns of the form (27)—(28) are empty. We may
then apply further unitary row and column operations to the first and third block rows

and columns of E, A and B. It follows that there exist unitary matrices 0,V,W
such that
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"BV = (3, 0 o0 o], U'BW = [0 0 7,
Eyy Eypo 0 O Bs; By
0 0 0 O EB 0
0 0 0 0 0 0
OYAV = Ay Ap A Aul,
Aoy Ay Agz Agy
Azr Azp Az Ay
| Ay Agr O EA (29)

where EE, ¥ A and EB are square, non—singular diagonal matrices of dimensions ¢,

n—m—{¢ and m —t respectively, and Ejy By, are square, non—singular matrices of
dimension t. Here rank(E) = ¢+t and rank[E,B] = ¢ + m. (The form (29) can also
be derived directly from the results of [1].)

From the decomposition (29) it can be seen that the matrices %, and %, cannot

be altered by feedback. We can, however, select matrices F and G such that the
system pencil oU™(E + BG)V — gUM(A + BF)V is equal to the pencil (23), where

ER= EEO 01, 2L= %30 ],
0 %0 0 EA
0 0 %

rank(¥;) =1, with rank(E) <r< rank[E,B], and ¥y, ¥,, ¥3 are arbitrary, positive
diagonal matrices. Appropriate feedback matrices F and G are given by

wic = lo 0 Gy 0], (30)
Gy Gaa Gz O
where
£ 0 .
Gz = EB:l 0 ol Ga2 = Baa (31— Eg),
o -1
G21 = — B2 Eyy, Go3 = — B2 By Gys,
and
gy 0 0 Fi3 Fyy
WE = 0 0 Fo3 Foq? (31)

where
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Fi3 = 2];1 0o — Az, Fu = —EI;IAM
0 X3
-1 -1
Fog = —Baa By Fy3, Fog = —Bya By Fus.

Some freedom in the solution remains, which has not been exploited here.

We remark that if r = rank[E,B], then the dynamical part of the closed—loop
system is of maximum dimension (equal to the dimension of the reachable space of the
original system), and the optimal solution is obtained by feedback G alone, with
The case of the state estimator problem, where B =1, is just the dual of the state
feedback controller problem. If 02 holds, the optimal observer design can, therefore, be

obtained by replacing the triple (E, A, B) by (ET, AT CT) and F by FT in (29),
(30) and (31).

For the more general output feedback problem, where B # I, C # 1, the singular
value structure that can be attained is more complicated. The problem of optimizing
robustness can, in this case, be reduced to the problem:

Given matriz M = lM“ Mlg] find A such that cond [ [M11+A Mlz] ]

o Mz Mz My My,
18 minimal.

This is an open problem. In practice an upper bound on the condition number can be
minimized, using the structure in Theorem 2. Details of the procedure are described in
[2] and [3] and numerical examples are also presented in [3].

In this section we have described a method for obtaining a regular closed loop
system pencil of index at most one using derivative and proportional feedback. The
feedback is selected to ensure that the properties of the pencil are insensitive to
perturbations, using singular value assignment. It is desirable for the system design to
have other additional properties, however; in particular, to be stable and, possibly, to
have specified finite eigenvalues. One strategy for achieving an overall design is to use
derivative feedback alone to obtain a robust, regular, index one system of maximal
dimension, and then to use proportional feedback to assign the required eigenvalues to
the system. In the next section we describe methods for robust eigenstructure
assignment in descriptor systems using proportional feedback.

5. ROBUST EIGENSTRUCTURE ASSIGNMENT

The aim of the design problem is now to select the feedback matrices to assign specified
eigenvalues to the closed loop system pencil. We consider here only the state feedback
controller problem and the state estimator problem, where C=1 and B =1,
respectively. The full output feedback design problem is much more difficult and is
beyond the scope of this paper. We assume that if derivative feedback is available, then
it is used to "pre—condition" the system pencil by singular value assignment, as
described in Section 4. We therefore consider here only proportional state feedback
designs.

The design problem is:

Given real system matrices E, A, B and a set of q = rank (E) self-conjugate
complez numbers = {1, Ay, ..., Aq}, select real matriz F such that the
closed—loop pencil



—12—

oE — f(A + BF)

is reqular and of indezx at most one and has the prescribed finite eigenvalues
Aj€L,i=12,..,q

For a robust solution to the problem we want the assigned finite eigenvalues to be
non—defective and we want some measure of the sensitivity of the eigenvalues (both
finite and infinite) to be minimal.

If welet (aj, §;) denote a generalized, simple eigenvalue of the pencil oF — A
with right and left eigenvectors x; and y; satisfying

T T
ojExj = fjAxj, oy E = fiyi A,

then a measure of the sensitivity of the eigenvalue is given by the condition number

~ lyill, IHxill;
- T T
(1y;"Bxj|2 + |y;TAx;]2)?

Cj (33)

(see [13]). The condition number is inversely proportional to the angles between the
invariant vectors y; and Ex; (or y; and Ax;j, in the case of infinite eigenvalues).
The condition number c¢; is, moreover, inversefy proportional to the quantity

(Iy'TEXj |2 + |ijAx- | 2)%, which measures how nearly the vector x; approximates a
nulf vector of both EJ and A and, hence, how close the pencil is to iosing regularity.

If the pencil oE — A is non—defective and a perturbation of order O(e% is made
in E or A, then the corresponding first order perturbation in a simple eigenvalue
(aj, f;) is of order 0(ecj), where distance is measured in the chordal metric [13}. If the
pencil is defective, then the corresponding perturbation in some eigenvalue is at least an
order of magnitude worse in ¢, and, therefore, defective systems are necessarily less
robust than those that are non—defective.

The sensitivity of a multiple (non—defective) eigenvalue is proportional to the
maximum of the associated condition numbers c¢;, taken with respect to an
orthonormal basis {x;} for the space of right eigenvectors and a corresponding set {yj}

of left eigenvectors normalized such that ijExi =0, ijAxi =0, for i+ j. (See[10]
for details.)

An overall measure of the sensitivity of the eigenvalues of a regular, non—defective
system pencil is given by a weighted sum of all the condition numbers

i }
Wu) = [Mw] , (34
je

where wj >0 and Y wj2=1. A regular non—defective pencil must, by definition, be of
index at most one and have precisely q = rank (E) finite eigenvalues. The robustness
measure ¥(w) can therefore be written [10]

Yw) = || D [EXq, AX ] ]i5, (35)

where D " is a diagonal weighting matrix, the columns of Xm form an orthonormal
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basis for the null space of E, and Xq = [xy, X, ..., Xq] is the modal matrix of right
eigenvectors associated with the finite eigenvalues, normalized such that |[|x;|| = 1,
j=1,2,..,q, and such that the vectors associated with each multiple eigenvalue form
an orthonormal set. (Here |||, denotes the Frobenius matrix norm.) A robust

feedback design can thus be achieved by selecting the eigenstructure of the closed loop
system so as to minimize the measure y(w) given by (35).

The existence of a solution to the eigenstructure assignment problem can be
guaranteed under the algebraic conditions of Section 4.1. In the next subsection the
existence results are given, together with a parameterization of the solution. In the
following subsection a technique for achieving robust eigenstructure assignment using
this parameterization is described.

5.1 Existence of Solutions

Necessary and sufficient conditions for the state feedback eigenvalue assignment problem
to have a solution are established by the following.

THEOREM 3 Given real system matrices E, A, B and any arbitrary self~conjugate set
&L= {A1, Agy vy Aq} of q =rank(E) complez numbers, there ezists a real matriz F

such that the matriz pencil oF + (A + BF) is regular and of indez at most one and has
the finite eigenvalues \; € £ j= 1,2, ..., q, if and only if the conditions C1 and C2,
defined in Section 4.1, }iold.

Proof Proofs are given in [7] [10] and [1]. O

We remark that the condition C2 ensures that the closed loop system pencil (32) can
be made regular and of index at most one, and the condition Cl guarantees that the
finite poles can be assigned arbitrarily.

For a non—defective closed loop pencil (32) with prescribed eigenvalues
Z={}j,i=1,2, ..., q}, where q = rank(E), we require that for some matrix

Xq € #7* 9 of full rank, the feedback matrix F satisfies
(A + BF)Xqy = EXqAq, Aq = diag{};}, (36)
and

rank [E, (A +BF)X | = n, (37)
where the columns of Xm form an orthonormal basis for the null space of E and
rank [Xq, X | = n. (38)

The condition (36) ensures that the closed loop pencil has the prescribed finite
eigenvalues A; with a full set of independent right eigenvectors x;j = Xgqej,
j=1,2,3,...,q, and condition (37) ensures that the system is regular angl of index at
most one. The required feedback ¥ can be parameterized in terms of the vectors
x5,j=1,2,3, .., q, and a matrix W. We have the following structure theorem.

THEOREM 4 Given the set £= {Ay, g, ..., A} of distinct self~conjugate complex
numbers, where q = rank(E), there exist vectors



—14—

xj € & ={x | (\E—A)x erange (B)}, A\je&, j=1,2,..,q, (39)

such that Xq = [x4, X2, ..., Xq] Satisfies (38), and a matriz W satisfying
rank [E + AX_X. +BWX]] = n (40)

if and only if conditions Cl and C2 hold. If (38)—(40) hold, then the matriz F given
by

F = [BY(EXqAq— AXg), W[Xg X ] (41)

solves the eigenvalue assignment problem, and (36) and (37) are satisfied. (Here B*
denotes the Moore—Penrose pseudo—inverse of matriz B and Xm denotes an

orthonormal basis for the null space of E.
Proof The proof is established in [10]. o

If the prescribed eigenvalues are not distinct, then C1 and C2 are necessary but
may not be sufficient to guarantee a non—defective solution to the eigenvalue assignment
problem.

Theorem 4 gives a parameterization of feedback matrix F in terms of the
eigenstructure of the corresponding closed loop system pencil. In the next subsection a
technique is described for selecting the free parameters to give a robust solution to the
system design problem.

5.2 A Numerical Algorithm

To construct a robust solution to the eigenvalue assignment problem, we use the
parameterization of the feedback F given by (41) in Theorem 4 and select the freedom
in Xy and W so as to minimize the measure of robustness »(w) given by (35). We
aim also to ensure that the ranks of the matrices in (38) and (40) are insensitive to
perturbations; that is, we want these matrices to be well—conditioned.

In practice it is sufficient to minimize the condition numbers

T T
k1= cond ([Xq, X ]), k2= condz (E+ AX X +BWX),

subject to |[E + AX_X + wa;f)n2 remaining finite. It can be shown [10] that the
measure ¥(w) is bounded in terms of the product x; k2. We have

71( k1 nz)’} <Y(w) |E+ AX Xz + BWX$||2 < 72 K1 K,

where y; and 1, are fixed constants. Provided ||E + AX(’DXE+ + BWXm||2 remains

bounded, minimizing &; and ky thus minimizes an equivalent measure of the
sensitivity of the assigned eigenvalues, as well as ensuring that the matrices in (38) and
(40) are well—onditioned. Since the free parameters appear independently in &, and
k9, these measures can be minimized separately. Optimizing the condition numbers &
and ks, also leads to other desirable properties of the closed loop system. In particular
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the transient response and the magnitude of the gains can be bounded in terms of &;
(see [10]), and a lower bound on the distance of the closed loop pencil to instability can

be given in terms of &i!(see [5]).
The computational procedure for solving the robust eigenstructure assignment
problem consists of four basic steps:

Step 1 Compute orthonormal bases X for kernel(E) and S; for the
subspaces of, definedin (39),for j=1,2,..,q.

Step 2 Select W to minimize onin(E + AX_X_ + BWX]) subject to

onax(E + Awaz + BWXi) < 7, where 7 is a given tolerance.

Step 3: Select vectors xj = Sj vj € &f with ||xj||2 =1,j=1,2,..,q, to
minimize kK.
Step 4: Determine F from equation (41).

Reliable library software with procedures for computing QR, SVD and LU
decompositions is used to accomplish these steps. Iterative techniques for selecting
vectors from given subspaces to minimize &y in Step 3 are described in [11]. The
computation of F in Step 4 is accurate as long as #; is reasonably small (relative to
machine precision). A detailed description of the algorithm is given in [10]. It is not
necessary that the prescribed eigenvalues be distinct. Provided that a non—defective
solution to the eigenvalue assignment problem exists for the given set ¢, the
algorithm determines a feedback that assigns the prescribed eigenvalues.

In this section we have described a procedure for designing a robust state feedback
controller with prescribed eigenvalues. The dual state estimator design problem can be
solved using the same technique by replacing the system triple (E, A, B) and the

feedback F in the algorithm by the triple (ET, AT, CT) and the feedback F.

6. CONCLUSIONS

Two techniques for designing automatic feedback controllers and observers for implicit
linear differential—algebraic systems are described here: singular value assignment and
eigenstructure assignment. The techniques are based on stable and reliable numerical
procedures for factorizing and reducing matrices to condensed forms, using unitary
transformations. Measures of sensitivity for the system designs are derived and
conditions for the existence of robust solutions to the synthesis problems are established.
The degrees of freedom in the design are identified and computational procedures for
selecting the free parameters to minimize the sensitivity measures are presented. These
results all, with minor modifications, apply also to discrete—time implicit linear systems
governed by dynamic—algebraic equations.

In practice a combination of the robust singular value and eigenstructure
assignment procedures can be used to synthesize full state feedback controllers and
observers. Applications of these combined techniques to the design of state—estimators
for flow in gas networks are examined in [12] and Crltl]. The system dynamics are
modelled by implicit, discrete—time, finite difference equations. The importance of
robustness in the observer design is demonstrated by the investigations. Effects of
model uncertainty and measurement noise are minimized, as far as possible, by the
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robust design procedures.

The synthesis of output feedback designs is more difficult and complicated than
state feedback or state—estimator synthesis, and many aspects of the output design
problem are still open. For systems that can be made regular and of index at most one
by feedback, the condensed form presented here identifies the system structure and the
available freedom for design synthesis. To exploit this freedom fully, further techniques
are still needed, and extensions are required to treat higher index systems that cannot be
reduced to systems of index less than or equal to one. Work on these developments is in
progress.
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