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ABSTRACT

This report continues the work by the author on duct flow initiated
in [4]. A quasi one-dimensional finite element method on a fixed grid is
derived from a stationary principle. The numerical method is formulated
first on a uniform grid and the graphical results presented. On
consideration of the relative accuracy of this approach an algorithm is
stated for the definition of an appropriate irregular grid and the
subsequent solution on it used to 1llustrate the possible improvements

that may result.
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INTRODUCTION

An introduction to duct flow and its approximate parameterization

is presented in [4].

The aim here is to formulate a numerical method for the approximate
solution of quasi one-dimensional duct flow through the derivation of a

stationary principle.

In Section One the properties of the general compressible flow to
be considered, together with the one-dimensional form of the motion
equations, are presented. A brief resume of the quasi one-dimensional
approximation to duct flow 1s given (see [4]) with the associated

revisaed equations of motion.

In Section Two two stationary principles equivalent to the
conditions defining quasi one-dimensional duct flow are derived. The
first, it is shown, may be obtained from a known stationary principle
for three dimensional flow and the second, which 1s peculiar to quasi
one-dimensional duct flow, is used to develop a numerical finite element

method.

The finite element method is impliemented, for various duct types,
on a uniform fixed grid in Section Three and comparison made between

this and the algebraic formulation of ([4].

In Section Four the effect of grid definition on the accuracy of
the numerical method 1is considered. A simple algorithm for the
definition of a fixed irregular grid is presented, together with the

associated benefits of this approach.



SECTION ONE : QUASI ONE-DIMENSIONAL DUCT FLOW

In this section the properties of a general compressible flow are
presented together with the one-dimensional form of the equations of
motion. A quasi one-dimensional approximation to duct flow -is then
introduced (for a more comprehensive review see [4]), which is a
particular example of compressible flow, and the revised associated

motion equations stated.

1.1 COMPRESSIBLE FLOW PROPERTIES

The compressible fluid to be considered is modelled by the
polytropic gas with the flow having the properties that it is inviscid
and steady. It i1s therefore characterised by streamlines in the flow
field on which the entropy, S, is constant (see [1]).

The fluid itself satisfies the law of Boyle and Gay-Lussac,

pu:[Ro/m]T, (1.1)
where p represents pressure, Ro is the universal gas constant, m the

molecular weight of the gas, T the temperature and v the specific volume

defined by

v=1/p , (1.2)

where p is density. The fluid motion is governed by the conservation



equations of fluid dynamics, which in the present circumstances are

CONSERVATION OF MASS : V.(pv) = 0, (1.3)
CONSERVATION OF MOMENTUM : Vp+p (v.W) v=0,  (1.4)
CONSERVATION OF ENERGY : v.Vs=o0, (1.5)

where v denotes the fluid velocity and V the gradient operator,

together with the appropriate equation of state

ENTROPIC EQUATION OF STATE : p =g p’ (1.6)

where 7 is a function of entropy and 7 {is the adiabatic exponent

associated with the fluid.

Additional variables associated with the flow are mass flow, Q, and

flow stress, P, related to those already stated by

Q=pv (1.7)

and

o
1

p+p (v.v) . (1.8)

Pressure gradients

The pressure, density, temperature and entropy associated with a
particle in any motion of such a compressible inviscid gas are related

by an enthalpy function R(S,p) (see [2]) with gradients:

MN=1 ;3 MNR=v, (1.9)
dp



This enthalpy function has a unique inverse for a given entropy value,
since ¥ > 0, and therefore a pressure valued function may be defined in
the present case of a polytropic gas by

with associated gradients:

bob=p ; O=-pT. (1.11)
MR ds

The total energy of the particle at any instant of a motion, h, is

now introduced as a function of the enthalpy and fluid speed,
h =R+ ((v.v)/2) , (1.12)

and substitution into (1.10) yields a pressure function now of three

arguments, namely
ply,h,s1 = 9T -/ (/21 )Y (g
The gradients of this function are,
dbpb=-pv , dp=p , dp=-pT, (1.14)

and it is the first of these, 1.e. that with respect to fluid speed,

which 1is required for the coming work.



Additional flow properties

The properties of the flow are now reconsidered with the {nclusion
of several simplifying features; the flow is firstly assumed to be
homentropic so that the entropy is constant, not only on a streamline,
but throughout the flow field except at discontinuities such as shocks.

The equation (1.5) is therefore satisfied identically. The flow is also

assumed to be irrotational, i.e.

Vxv=0. (1.15)

This equality is satisfied by the introduction of a velocity potential,
@, such that

v=Vg. (1.16)

The flow can now be thought of as being homenergic so that the total
energy (1.12) 1s constant in the flow field, as can be seen from the

alternative form of the conservation of momentum equation

Vh-TVs=vx(Vxv), (1.17)

(see [3]). The motion equations of the flow reduce to (1.3) together

with the irrotationality condition (1.16).



In the present case interest lies with one-dimensional fiow, which of
necessity is drrotational. The appropriate one-dimensional form of the
irrotationality condition therefore becomes redundant and is no longer a
necessary flow condition. The flow is completely defined by the constant
values of entropy and total energy in the flow field and the

conservation of mass equation

d(pv)=0. (1.18)
dx

It now only remains to define the particular gas flow to be
considered in terms of the thermodynamic constants associated with the
fluid, which in the present case is taken to be air, as specified in

[3], namely

7= 1.4,
R, = 8.31 Jmo1” K71 , (1.19)
m= 28.96 x 10 2 kg ,

and also the flow constants resulting from the homenergic and

homentropic nature of the flow (see [3])

2.74 x 10° Jmo1 " Ykg™! (1.20)

-
u

7.08 x 10% (SI UNITS) .

3
1]



1.2 DUCT FLOW

The analysis is now confined to a specific example of compressible
flow through various forms of duct. The ducts considered are firstly
converging or diverging axi-symmetric cone sections and then as a

combination of these the more complex axi-symmetric de-Laval nozzle (see

[41).

The duct flow field may be thought of as consisting of streamlines
invariant in time. The full duct flow may be reduced to the
consideration of conditions on a single representative streamline on

which, on average, the fluid particle history typifies the full flow
(see [5]).

In the present work the duct is supposed to be slowly varying so
that, to a first approximation, the motion is one-dimensional in the
x-direction only. Then the flow must be irrotational and therefore by
now assuming that the flow is homentropic it must also be homenergic.
The streamlines in the flow field are consequently indistinguishable and
each of them may be thought of as the representative streamiine, defined

by the constant specified values of entropy and total energy (1.20).

The conservation of mass equation appropriate to quasi

one-dimensional primary duct flow is

d (a(x) A(x)) = 0, (1.21)
dx

where A(x) 1s the local cross-sectional area of the duct and Q(x) is



the local mass flow defined by (1.7) which it 1is convenient to restate

as,

Q:pv R (1.22)

The complete solution of the flow, in which all of the flow variables
are recovered, is possible on using the total energy equation (1.12) in
an appropriate form. This form may be obtained on writing the enthalpy
term in (1.12) as a function of density by equating (1.10) and the
equation of state (1.6). Note that the particular form of (1.6)
associated with the fluid 1is obtained by substitution of (1.19a) and
(1.20b).

The quasi one-dimensional approximation to duct flow is therefore
defined by the constant values of entropy and total energy (1.20)
together with the conservation of mass equation (1.21) and the mass flow
condition (1.7). It 1is these equations that must be satisfied for

complete solution of the approximate flow.



SECTION TWO : TWO REPRESENTATIVE STATIONARY PRINCIPLES OF QUASI

ONE-DIMENSIONAL DUCT FLOW

It is possible to derive several stationary principles equivalent
to the conditions defining quasi one-dimensional duct flow. In this
section two such stationary principles are considered; the first, it is
shown, may be obtained from a known stationary principle for three
dimensional flow. The second is peculiar to quasi one-dimensional flow
and is the more convenient one from which to develop a numerical method

for the approximate fluid speed in a duct motion.

2.1 A STATIONARY PRINCIPLE FOR QUASI ONE-DIMENSIONAL DUCT FLOW

The quasi one-dimensional approximation to duct flow 1s defined by
(1.21) and (1.22) which are considered to hold in a fixed domain, D,
which represents the duct axis. Let ¢ be an undetermined function of

position and define a functional I = I(z) by

L]
1]

J’[QAv+Ap(v)—QAd(£)]dx, (2.1)
) dx

where

IN
(1]

(@a,v, §), (2.2)

and A = A(x) is the specified duct area variation at position x. The
function p(v) in (2.1) is that defined by (1.13) where in one dimension
V.V E vZ and the arguments h and S have now been omitted as in this case

they take constant values.



Now consider small, arbitrary variations of the arguments (2.2)

applied at every point, x, of the domain
§z=(Céq, v, 86 ) . (2.3)

The functional (2.1) is stationary with respect to the variations (2.3)
if and only if its first variation 1s zero, that is,

61 = § [ [QAV+ADPK) -QAd) ] dx ] = 0, (2.4)
D dx

which may be written explicitliy as

§1 = J [ JQ[ Av - A df ] + 6v[ QA+ Ad ] + 5{[ g_(o A) ] ]dx =0,

D dx dv dx

(2.5)
where at the ends of the domain it is assumed that §¢{ = 0.

Then from the fundamental lemma of calculus of variations (see [6])
if 6I 1is zero for arbitrary variations (2.3) then the individual
components of the integrand in the expression (2.5) are zero. Thus the
Euler-Lagrange differential equations of the stationary principle (2.4),

i.e. the natural conditions, are given by
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Q@ : v =df, (2.6)
dx
v+ Q=-dp (2.7)
dv
and
€ : d@A)=0. (2.8)
dx
The natural condition (2.7) may be written in the form
Q=pv, (2.9)

by using (1.14a). It can now be seen that (2.8) is the conservation of
mass equation (1.21) particular to quasi one-dimensional duct flow and
(2.9) 1s exactly the definition of mass flow (1.22). Condition (2.6) may
be identified as a trivial reduction in one dimension of the
irrotationality condition (1.16) but, as stated previously, it plays no
part in the definition of the flow. The values of { throughout the flow

may of course be computed by integration of (2.6) but these are of no

physical interest.

Therefore the generating functional (2.1) is stationary with
respect to first variations of its arguments if the original problem, in
the present case expressed by (1.21) and (1.22), 1s satisfied; this also
being true conversely. Thus making the functional (2.1) stationary is
equivalent to satisfying the differential equations associated with the
particular problem we are considering and it therefore determines the

quasi one-dimensional approximation to the duct flow problem.
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It will now be shown that the functional (2.1), and thus the
stationary principle (2.4), may also be obtained from a functional found

in [2], namely

S = J [ Qv+pv)-QVg]av, (2.10)
v

where V is a closed simply connected region and p(v) is the function
used in (2.1). The natural conditions of the stationary principle S = 0
are the equations governing a full compressible, homentropic,

irrotational (and therefore homenergic) flow (see (1.3) and (1.16)),

that is
V_g =0, (2.11)
Q=pv, (2.12)
and
!:qu (2.13)
In cartesian co-ordinates (2.10) is
S = JJJ [ Q.v+p(v) -QV¢1dxdydz, (2.14)
v

where integration is over the three dimensional domain V and V is the
cartesian gradient operator (in three dimensions). (2.14) may be put
into a form more applicable to duct flow by making a co-ordinate change

to cylindrical polar co-ordinates to give
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S = JJJ [ Q.v+p(v) -Q.V ¢ 1 dx rdr dé, (2.15)
v

where the domain V may now be thought of as representing the duct

itself; the gradient operator now takes the form,

0p uy+ 04 u (2.16)

-~ ~

where Yo Uy and u, are unit vectors in the directions of increasing r,

6 and x.
Since the duct is axi-symmetric, (2.15) simplifies to

S=27 J J [ Qv +p(v) -QV 4] dxrdr. (2.17)
7

where ¢ 1is that part of the surface # = 0 lying within V. Consistent
with the assumptions of quasi one-dimensional flow the arguments of the
functional (2.17) are now supposed, to a first approximation, to be

dependent only on x. Thus,

S = J [Qv+p-Qds ] 7 R?dx, (2.18)
dx

D
where the domain D represents the duct axis and R = R(x) the radial
distance from the axis to the duct wall at position x. This may be

written in the form of (2.1),

S = J [Qv +p-Qdd ] Ax) dx , (2.19)

D dx
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where now ¢ takes on the same passive role as ¢ in (2.1) ,since the

local cross—sectional area of the duct is given by

A(x) = ® R? . (2.20)

2.2 ANOTHER STATIONARY PRINCIPLE FOR QUASI ONE-DIMENSIONAL DUCT FLOW

The equations (1.21) and (1.22) are again considered to hold in the
same fixed domain, D, representing the duct axis. In the present case
let ¢ be an undetermined function of position and define a further

functional J = J(z)

J B J [Qv+pv) + §d(QA)] dx, (2.21)

) dx

with arguments,

z=(Q,v,¥). (2.22)

Now consider small, arbitrary variations of the arguments applied

at every point, x, of the domain
dz=(6, év, &) . (2.23)

The functional (2.21) is stationary with respect to the variations

(2.23) if and only if its first varijation is zero so that

§J = 6 [ J [Qv+p(v) +94d (@A) J1dx | =0, (2.24)
) x
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which may be written as,

§J = J [ JQ[ v - A dy ] + év[o + dp ] + 6¢[ d (Q A) J l]dx =0,
: dx dv dx

(2.25)

where at the ends of the domain it is assumed that é# = 0. Then the

natural conditions of the stationary principle (2.24) are given by

Q@ : v=Ady, (2.26)
dx
bv @ Q=pv (2.27)
and
§¢ : d(@A)=0, (2.28)
dx

where (2.27) 1is again obtained by the substitution of (1.14a). It may
now be seen that (2.27) and (2.28) are exactly the equations defining
quasi one-dimensional duct flow ((1.22) and (1.21) respectively).
Condition (2.26) again plays no part in the definition of the flow but
the value of ¢ throughout may be determined by the integration of
(2.26). Therefore making the functional (2.21) stationary 1is also
equivalent to satisfying the differential equations associated with the
quasi one-dimensional approximation to the flow problem under

consideration.
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The natural condition (2.28) may be imposed as a constraint on the
variations in (2.24) on ensuring that mass conservation is satisfied by

assigning

Q(x) A(x) = CONSTANT , (2.29)

which in the present case is chosen (see [4]) such that,

Q(x) = C Ae y (2.30)

A(x)

where C 1s the mass flow rate entry value to the central streamline
along the duct axis and Ae is the duct entry surface area. This gives a
local map (2.30) on the central streamline between distance along the

duct axis, x, and the local mass flow rate, Q(x).

The flow boundaries are a pair of points on the central streamline
at the 1inlet and outlet duct locations and the boundary conditions,
analagous to those for the full flow (see [5]), are the assignment of

mass flow rates at entry, Qe’

Q. =C |, (2.31)

Q =CA_, (2.32)

where Ao is the outlet duct cross-sectional area.
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The remaining natural conditions (2.26) and (2.27) are those

associated with the new stationary principle,

6K=5[J’(0Aev+p(v))dx]=o, (2.33)
D A(X)

where K = K(v). The principle 6K = 0 may be applied to a particular
duct motion on prescription of the the overall duct area variation, the
associated entry mass flow rate to the central streamline (2.31), the
entry duct area and the constant values of entropy and total energy. The
stationary values of (2.33) are exactly the same as those for (2.24) and

the solution obtained for the approximation to the actual flow is the

same (see [6]).

Note that K depends only on the fluid speed and therefore the
principle (2.33) can now readily be used in the development of a
numerical method for the derivation of the approximate fluid speed

throughout a particular duct motion.
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2.3 A NUMERICAL FORMULATION OF QUASI ONE-DIMENSIONAL DUCT FLOW

In the absence of shocks the fluid speed is continuous throughout

the duct; a semi~discrete approximation to the fluid speed is now sought

of the form

a;, a,(x) , (2.34)

1

<1
1
npes~>~>=2

1

in a subspace of C°, where a,, i = 1(1)N, are constant coefficients and
a; = ai(x), i = 1(1)N, are test functions spanning c°.

The substitution of the approximation (2.34) into the functional K,
underlying the stationary principle (2.33), yields now a function, L, of

the unknown coefficients a,,

L= L( 84y 5y wee By 4y By ) (2.35)
where L = K(v) is defined by,
L = J [ C A v + p(v) ] dx , (2.36)
D CA)

on the same domain, D, as 1its counterpart in continuous space.
Therefore making the function (2.36) stationary gives an approximation

to the stationary point of the functional K in the chosen subspace; the

condition for this is simply

i =o0. [ 1= 1(1)N] (2.37)

da

1‘
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The explicit form of (2.37) is therefore obtained by differentiation of

the function (2.36), i.e.

a = J [ C A d (v) + 4 (p(v)) ] dx . [ 1= 1(1)N ]
da; 7 L AKX) Oa, da,
(2.38)

[a] (b}

The two steps in this evaluation, by substitution of the pressure

gradient (1.14a), are

[a] : 4 (v) = o [ 1= 101N ]
ﬁa1
and (2.39)

(bl : 9 (p(V)) = dv p’(V) = - a, vew) . [1=1(0)N]
%, %,

The aim ultimately being to derive the approximate fluid speed
throughout the duct, this necessitates that the density term in [b] be
replaced by an algebraic relation between these two flow variables
(see [3]), which is

o(v) = ¢{1/C1=7) [ [=D/71 (h-(2/2)] ]“/(7")) ., (2.40)

where the flow constants take the prescribed values (1.19a) and (1.20).
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The conditions (2.37) now take the form of a system of ron-iinear

equations, the unknown guantities being the coefficients, a;:

L

1

D

v ](1/(7‘1)) ] B dx B0
A(X) Y 2

[ i= 101N (2.41)

where we recall that v is the piecewise linear approximation to the
fluid speed (2.34).

The system (2.41) may now be written in terms of an inner-product,

<cAe-pV.a1>=o, 1= 1N,

(2.42)
A(x)

where < - , > denotes integration over the domain and it may be

noted, by using (2.30), that subsequent to the specification of the test

functions, "1’ (2.42) is a particular weak form of the mass flow

condition (1.22).

On solution of this system (2.42) the function (2.36) has been made

stationary with respect to its arguments, solving the given flow problem

discretely using Galerkin’s method (see {[7]), and thus determining an

approximation to the axial fluid speed throughout a particular duct
motion.
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2.4 SYSTEM SOLUTION ALGORITHM

In the present case the test functions are chosen to be piecewise

linear basis functions of local compact support.

A typical interior

basis function is illustrated in FIG.1 and defined by,

i g9
1

ays i

values at the fixed nodal positions S

being zero

1(1)N,

i
X = 8y Sinq $x &8y (ay)
Si 7 S
L= 200811 , (2.43)
_ 2
Sisr ~ X Sy £ x£8,, (o))
Sir1 = 84

outside the interval [ S

f=1 S_i+1 1. The coefficients

in (2.34) may now be interpreted as the unknown nodal

1(1)N, to be specified,in

o 1

the solution domain.

FIG.1

Cto
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Numerical quadrature

In the system of equations (2.42) the integrals are evaluated by
performing the required integration numerically using a quadrature
formula. Note that the integrands are zero everywhere except over small

domains spanning two elements

]

and (2.44)

ey = 0844 84

ey = [ 855 8541

Therefaore denoting by G the integrand of the 1’th equation of (2.42)
for an interior node the integration may be written in two parts, namely

Sy Si+1

J ] a; dx + J G a§ dx = 0 i= 2(1)N-1 , (2.45)
S

S

-1 i

inferred from the interior basis function definition (2.43).

The quadrature formula applied in the present case, to each of the
integrals in (2.45), is the closed three-point Newton-Cotes formula more
commonly known as Simpson’s Rule. This is defined on a general domain

[a,b] by

T f(x) dx = [ b-a ] [ f(b) + 4f( a+ b ) + f(a) ] . (2.486)
b 6 2
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Iterative method

The unknown nodal amplitudes, ai, at the associated nodal
positions, Si’ are now obtained by simultaneous solution of the equation

system (2.42), by application of an iterative method.

Define first a vector of the unknown coefficients
1 L) a2 ] 1 aN ) ] (2-47)

and consider also the non-l1inear system of equations (2.42) written in

vector form

WOT=0, (2.48)

where

f1(§) = fi( ay , 8, , 8y ) [1i=101)N1] . (2.49)

Now a general iterative method may be defined by

aJ+1

= g(ad) (2.50)

j+1

where §J is the updated solution vector at iteration level j+1 and ¢

J

is a function of a”, the present solution vector at iteration level j.

The exact fixed point of the system (2.50), a*, if it exists, then

satisfies,

a' = g(g*) ’ (2.51)

which may be found approximately if §J+1 s §J to within a specified

tolerance.
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The system F = Q0 may be solved by this iterative process by making
a suitable choice of g; thus in the present case Newton’s iterative
method for several variables is employed whence g takes the particular

form
E(gj) , (2.52)

where the Jacobian matrix of the system J, with its (n,m) th entry

denoted

a o= ﬂin(g) , (2.53)

n,
6am

is defined by

1(1)N , (2.54)

Jah) = [ 9%y (@) IQ = o) ] i 1(N

da

m

in which case the fixed point of (2.52) satisfies

M
~
I®
~
1]
({=}

(2.55)

The dimension of the Jacobian matrix in the iterative method is
obviously dependent on the number of equations in the system and thus on
the number of nodes in the numerical formulation. Assuming there to be

at least two interior nodes, i.e.

N>4 , (2.56)
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then inversion of the Jacobian matrix necessary for (2.52) will be
non-trivial. The iterative method 1is therefore actually used in an

equivalent form by solving the linear system

J(éj) Ej+1 = - E(gj) , (2.57)

‘ (2.58)

The interative scheme here is said to have converged when the
pointwise maximum residual error of the system of equations is less than
a specified tolerance,

MAX l f1(gj) I < 0.00001 , (2.59)

which is an alternative condition to that stated earlier.



_25_

SECTION THREE : IMPLEMENTATION OF THE NUMERICAL METHOD ON A

UNIFORM GRID

3.1 FORMULATION

The solution domain, in which the defining equations ((1.21) and
(1.22)) of quasi one-dimensional duct flow hold, is defined as
0.0 {x<d, (3.1)

where d 1s the domain length. The numerical solution grid (see FIG.2)

is specified such that the boundary nodal positions, 81 and SN, lie at
the domain extremes

S1 = 0.0, (3.2)

SN =d,

where N is the number of nodes in the numerical formulation. The

interior nodal positions are equi-spaced by the distance H where

H=1(d/N), (3.3)

which is therefore the constant element length (see (2.44)) throughout

so that

Si+1 -8, =H [ i=101)N-1 1. (3.4)
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e e e e e e
B T S NN N2 eN-1
S Sy Sg S4 S SN2 Sh-1 N
x=0 x=H x=d

FIG TWO

The piece-wise linear basis functions associated with an interior

node in the present formulation take the simplified form,

[+ x - (1-2) (1-2)H ¢ x £ (-DH ()
H
0 = | [ 1=2(1N-11 (3.5)
- X + 1 (1-1)H € x < 1H (a%) ,
| H

uniform in i, and for the boundary nodes the basis functions are

defined by
4, = - x+ 1 0 {x<H
H
and (3.6)
ay = X = (N-2) (N-2)H € x € (N-1)H .

==

The corresponding approximation to the fluid speed, and thus of the
discrete function L (2.36), is obtained by substituting (3.5) and (3.6)
into (2.34); making this function stationary produces the relevant

equation system.
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Evaluation of the integrals in the system by the numerical quadrature
(2.46) then yields a particular non-linear system of equations for the

unknown nodal amplitudes, applicable to the uniform fixed grid

formulation, namely,

f1(a_\):CAeH[1+ 2

6 Ae A(H/2)

- B H [ ayh- a2 (a8 (h- (ayr 8)H¥?] = 0
6

2 8
f,(a) = CA_ H [ 2 + 2 + 2
6 A((21-3)H/2) A((21-2)H/2) A((21-1)H/2)
- B u [ 2a,h - ah¥% (a1t a) (h - (2 yrah?
6 2 8
+agtagg) (h= (e, OD¥2 ] =0 1= 20N8-1)
8
fN(g)=%eH[l+ 2
6 A A((N-3/2)H)

o

- ﬁﬂ [ ay(h - 3§)5/2+ (ay_i+ ay) (h - (fN-1:N)2)5/2] .

2 8
(3.7)

where / is a quantity defined in terms of the entropy by

f = [ 2/17 )5/2 . (3.8)
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The system of equations is solved by Newton’s method, where here the
Jacobian matrix takes a particularly simple tri-diagonal form. Hence the

linear system (2.57) is easily solved at each iteration level by L-U

factorization.

3.2 NUMERICAL SOLUTION OF CONE SECTION FLOW

The particular domain on which a cone section lies is defined as

0.0 {x £1.0; (3.9)

the boundary nodal locations are therefore S1 = 0.0 and SN = 1.0, the

interior nodes being equally spaced by a distance (1/N) apart.

A particular converging cone section flow is defined (see [4]) by

the area variation

A(x) = 1+ 0.1(1-x) + 0.05(1-x)? ,
Ag = 1.15 (3.10)
Ao = 1.0,

as shown 1in FIG.3{, and prescription of the mass flow boundary

conditions by

C = 200.0
and by (2.30) (3.11)

Q, = 230.0 .
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By substitution of (3.10ab) and (3.11a) into (2.33) the associated

unique stationary principle representative of this motion is

§ [ J [ 230.0 v + p(v) ] dx ] = 0. (3.12)
D 1+ 0.1(1-x) + 0.05(1-x)*

A diverging section flow is also defined (see [4]), with the area

variation illustrated in FIG.5:, by,

A(X) = 1 + 0.1x + 0.05x2 ,

Ag = 1.0, (3.13)
A, = 1.5,

C = 230.0 , (3.14)
Q, = 200.0 ;

the corresponding stationary principle may be stated as

) [ J [ 230.0 v + p(v) ] dx ] =0 . (3.15)
D 1+ 0.1x +0.05x*

Initial data regions

The flow throughout either of the cone section geometries may be

subsonic or supersonic (see [4]), the definitive quantity being the

critical fluid speed, C*,

v < C, : SUBSONIC FLOW ,

(3.16)
v > C_ : SUPERSONIC FLOW ,
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(see [1]1). The critical value is that where the fluid speed equals the
local sound speed and is dependent on the total energy within the flow

(1.20a) and the adiabatic exponent associated with the fiuid (1.19a),

here we have
C, = 302.5 ms ' . (3.17)

Hence there will exist, for a particular cone section, two
independent solution vectors of the equation system (3.7), i.e. two
fixed points, a*, satisfying (2.51), corresponding to the two possible

flow types defined by (3.16).

Correspondingly there are two positive distinct dinitial data
regions. These depend on the number of nodes in the numerical
formulation and in the present case are shown when employing five nodes

in the numerical solution of both cone section motions

(r1] : §°€ [1,287] SUBSONIC FIXED POINT ,
(3.18)
[r2] QOE [324,630] SUPERSONIC FIXED POINT .

Specifying the constant initial data vector in one of these regions will
result in convergence of the 1iterative method to the respective fixed

point such that (2.51) 1is attained, subject to the tolerance (2.59).
Assignment from [ri1], say

a = 200.0 , (3.19)

will determine the piece-wise linear subsonic fluid speed variation for

flow through both section geometries (see FIGS.3::,535:i), and
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alternatively from [r2], say

a = 500.0 , (3.20)

the piece-wise 1inear supersonic fluid speed variation will be obtained

(see FIGS.411,613).

The remaining flow variables associated with a cone section flow
are related to the fluid speed by a set of algebraic relations, (see [3]
and also the presentation in [4]), of which (2.40) 1is an example.
Therefore 1f the subsonic and supersonic fluid speed variations
throughout such a motion are considered as particular parameterizations
of the flow in these relations then, for each, the piece-wise 1inear
variation of all flow variables may be determined. The subsonic
variation of all such flow variables through both cone section
geometries 1is shown 1in FIGS.3,5 and the supersonic variation 1in

FIGS.4,6.

In a similar manner by using a particular fluid speed variation as
a set of intermediate numerical parameters in the algebraic relations a
graphical representation of the approximate inter-variable relationship
of any flow variable pair during the particular cone section motion may

be obtained.

Relative error

An algebraic parameterisation for quasi one-dimensional duct flow
is available in [4], through the derivation of a non-linear relationship
between the fluid speed and the distance from inlet along the duct axis.

The fluid speed variation throughout a motion is then obtained by the
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specification of a range of axial locations between the duct inlet and

outlet stations. The degree of accuracy to which this is computed allows
the algebraic formulation to be used as an ’exact’ solution to compare
with the numerical results; results for the particular cone section
motions considered here have already been calculated for both flow types

in [4].

Therefore, for each of the section geometries, we now have two
piece-wise 1linear functions representing the fluid speed variation
throughout, which shall be denoted by f and g, each defined on a
different grid but on the same domain [0,1]. A measure of the relative
difference between them is possible by definition of a general relative

L2-norm, Lr’ derived from

1
L2 = _[ (f - @) dr . (3.21)
r O m——

1
J'(f + @)% dr
o 4

The relative error may be used, to test the accuracy of the numerical

results, in particular in relation to the number of nodes used.

We specify arbitrarily that the numerical solution of a particular

cone section motion is sufficiently accurate if the magnitude of the

relative error satisfies:

RELATIVE L2 ERROR < 0.01 , (3.22)

The relative error for the numerical solution of both possible flow

types through both cone section geometries, with various numbers of
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nodes, is shown in TABLE.1.

CONVERGING AND DIVERGING CONE SECTIONS
RELATIVE L2 ERROR BETWEEN NUMERICAL AND ALGEBRAIC SOLUTIONS
NUMBER OF NODES SUBSONIC FLOW SUPERSONIC FLOW
5 0.0000645 0.0000279
7 0.0000283 0.0000122
9 0.0000158 0.0000068
11 0.0000101 0.0000043

TABLE.ONE

The fact that the relative error magnitude, in the numerical
solution of the same flow type through both section geometries, is the

same is a consequence of the fluid speeds being the inverse of each

other.

A1l the values in TABLE.1 easily satisfy the accuracy condition
(3.22). This would be expected from the qualitative appearance of the
graphs of the algebraic parameterisations for these motions (see
FIGS.3vis¢,4vist,5v84¢,6vist taken from [4]) which are nearly linear.
The absence of curvature in these graphs allows the uniform fixed grid

approach to represent the algebraic solution reasonably accurately.

On consideration of the accuracy condition (3.22) alone any of the
number of nodes shown 1in TABLE.1 1is sufficient 1in the numericai
formulation, but by also taking into account computation time it is

sensible to employ relatively few nodes, in the present case five.
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3.3 NUMERICAL SOLUTION OF DE-LAVAL NOZZLE FLOW

The de-Laval nozzle is defined on the domain
0.0 ¢ x £ 2.0, (3.23)

by the area variation corresponding to the two composite sections

ENTRY SECTION : Al(X) = 1.1 - (x/8) 0.0 < x £ 0.8,

(3.24)

EXHAUST SECTION : A2(X) = (2.6/3.0) + (x/6) 0.8 < x £ 2.0,
(see FIG.71) with
Ae = 1.1,

AT = 1.0, (3.25)
A° = 1.2,

where AT is the minimum cross-sectional area of the nozzle at the
throat location, i.e. from (3.24) at x = 0.8. Boundary nodes are placed
at S1 = 0.0 and SN = 2.0. The interior nodes are equally separated by a
distance (2/N); the number of nodes is specified such that a node always

1ies at the nozzle throat location.

The entry mass flow rate to the central streamline is assigned by,

C = 223.9193 , (3.26)
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and the critical value of mass flow rate on that streamline, in this

case is
Q, = 246.31124 , (3.27)
(see [4]) corresponding to the critical fluid speed (3.17) being
attained at the throat. The outlet mass flow rate value is then, from
(2.30)

Q, =205.25936 . (3.28)

Te stationary principle representative of this motion given by

(2.33) is,

) [ J [ 246.31124 v + p(v) ] dx ] E 101 ; (3.29)
D A(x)

where A(x) is defined by (3.24).

Initial data regions

The assumption is made that the flow enters the nozzle subsonically
, therefore the mass flow rate at the throat being critical means that
the flow in the exhaust section (diffuser) may take one of two forms.
Dependant on the outlet pressure conditions it may remain subsonic
throughout the nozzle, or a transition may occur at the throat and the
flow will become supersonic in the diffuser (see {4]). It 1is 1in these

two possible flow behaviours that interest 1lies.
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There exist two independent soiution vectors, satisfying (2.54),

. . X . %
corresponding to subsonic flow, aub’ and supersonic flow, ésup’
throughout the complete nozzle and, as in cone section flow, two initial
data regions. The exact bounds of the initial data regions again depends

on the number of nodes in the numerical formuiation and are shown in the

present case for when employing twenty-one nodes

[R1] : go € [1,287] SUBSONIC FIXED POINT ,
(3.30)
[R2] : go € [322,625] SUPERSONIC FIXED POINT .

Prescription of the constant initial data vector in each of these
regions causes convergence of the iterative solution method to the
respective fixed point. Particular to de-Laval nozzle flow there also
exists a third fixed point as a linear combination of the two already
stated. This corresponds to the possibility of transition flow explained

. *
above and will therefore be denoted by atrans'
The piece-wise linear approximation to the subsonic fluid speed
variation throughout the nozzle is obtained by specifying the constant

initial data vector,
[}
a = 200.0 , (3.31)

(see FIG.73¢{). The determination of the approximation to transition
flow is by a process analagous to the analytic fixed point theory. The
piece-wise linear approximation to supersonic flow throughout the nozzle

is first computed by prescribing the constant initial data vector
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a’= 500.0 , (3.32)

and a linear combination, about the throat node, is then taken between
this solution vector and that obtained for the subsonic flow. This is

performed in the following manner

a* a < a* S a*

sub sub 1sub_ Tsub

%
%rans - [ (3.33)

- % % *
a < a { a

! sup aTsup sup Nsup

where a: and a: are nodal numerical solutions at the throat (see
sub sup

FIG.8:¢). Note that it would seem viable to obtain the transition flow
approximation in a more fundamental manner by specifying the initial
data vector as a l1inear combination, about the throat node, of (3.31)

and (3.32), ij.e.

o] [¢] (o]
a = 200.0 a, < a, < ar
(3.34)
o [+] (o] o]
a = 500.0 a; < a, < ay

but this produces large gradients in the initial data around the nozzle
throat. Consequently in that region of the solution domain there occurs,
whatever the choice of initial data value for the node at the throat,

unacceptable oscillations in the final converged solution vector.

Using the two fluid speed solution vectors, associated with the two
flow behaviours of interest in the nozzle, as particular

parameterizations of the flow in the algebraic relations (see §3.2), the
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variation of all of the flow variables 1in the flow may be determined
(see FIGS.7,8). Graphs of the relationship between any flow variable

pair during a motion may also be simply derived.

Relative error

A comparative ’exact’ solution for the particular de-Laval nozzle
motion considered here 1is available from [4]. Therefore the relative
difference between the numerical solution and this formulation may be
computed using (3.21). The critical point being attained at the throat
means that, for the numerical solution of both flow behaviours, the
converged solution value at the throat node may be overwritten by the

critical fluid speed value (3.17), i.e.

a.: = 302.5 . (3.35)

The magnitude of the relative error for a range of numbers of nodes
used in the numerical formulation, for both flow behaviours, is shown 1in

TABLE. 2.

DE-LAVAL NOZZLE
RELATIVE ERROR BETWEEN NUMERICAL AND ALGEBRAIC SOLUTIONS

NUMBER OF NODES SUBSONIC FLOW TRANSITION FLOW
1 0.0158 0.0095
15 0.0105 0.0063
21 0.0078 0.00465

TABLE.TWO
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The significant decrease in accuracy of these solutions, compared
to those obtained for the cone section motions (see TABLE.1), is due to
the relatively large curvature, i.e. rate of fluid speed change, present
around the nozzle throat. This can be clearly seen from the algebraic
formulations of these flows (see FIGS.7vis:,8vizs from [4]). The
relative accuracy condition (3.22) can only be met by employing
twenty-one nodes in the numerical formulation of subsonic fiow, which is
computationally expensive (note that the same number is used 1in the
approximation to transition flow for consistency). It can therefore be
concluded that the present numerical approach is not very efficient when

significant curvature occurs in the solution.
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SECTION FOUR : IMPLEMENTATION OF THE NUMERICAL METHOD ON AN

IRREGULAR GRID

It 1s apparent from the results obtained for the numerical solution
of cone section flow and de-Laval nozzle flow on a uniform grid (see §3)
that the definition of the grid itself plays a critical role in the
consideration of the applicability of a numerical method to the solution

of a particular problem.

The curvature present in the solution of the de-Laval nozzle flow
(8§3.3) suggests a re-definition of the present uniform grid is needed if
a solution of the same order of accuracy as that for cone section flow
is to be achieved inexpensively. One possible approach is to use a fixed
irregular grid. The number of nodes in the formulation remains the same
but these are now re-distributed throughout the solution domain, using
a-priori knowledge of the actual solution, so as to improve the
representation of known solution features and hence improve the relative
accuracy of the numerical solution. Alternatively if the key issue is
computational effort then the same order of accuracy may be achieved on

an irregular grid as on a uniform grid, with fewer nodes employed.

Knowledge of the solution has been assumed here although this 1is
usually not available. The following results do though give useful
insight into the benefits of grid re-definition and also provide a 1ink

to adaptive grid techniques which will be presented in the next report.

The particular nozzle motion to be considered is defined by
(3.24)-(3.28) and 1ies on the domain (3.23). The exact solution of this
motion is available from [4] and graphs of the parameterizations of both

subsonic and transition flow are shown in FIGS.7viti,8viis.
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4.1 GRID DEFINITION

The irregular grid is specified such that the boundary nodal

positions 1ie at the domain extremes,

and (4.1)
2.0 .

(72}
"

The interior nodal positions are then determined in two stages.

1. Polynomial interpolation of algebraic formulation

Flow through the nozzle is considered to occur 1in two distinct
stages, the division being at the nozzle throat. An exact interpolation
polynomial, p, of degree n is then passed through n+1 selected points

( X{0Yy ), 1 = 0(1)n, calculated by the method used in [4], 1in each
stage of the flow. Thus two such polynomials will represent a full

nozzle flow, each of which is unique over its respective domain, such

that
p(xi) S 1= 0(1)n
where (4.2)
. B = 2 - n
P(xy) = ag + a; Xy +a, x.* + ... +a x; ,
and a,, 1 = 0(1)n, are the unknown polynomial coefficients. The

1

coefficients in each polynomial are obtained by writing the associated

nt1 equations of the form (4.2a) as a linear system
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1 Xq xé xg ........ xg 50 Yo 2
2 3 n =
1 Xy Xy Xy weenaans X, a, - Yy (4.3)
2 3 n =
1 Xn xn xn ........ xn a Y
L 4 ) L d

where the coefficient matrix is Vandermonde, and solving with an

efficient Gauss elimination routine.

2. Equi-distribution of nodes (see [8])

The specified number of nodes to be used in the numerical
formulation in each nozzle section, are then equi-distributed over the
respective interpolating polynomial with respect to the square root of
its second derivative. This process uses fixed nodes at the ends of the
domain on which the polynomial is defined and distributes the remainder
internally dependent on the curvature. Thus we produce a numerical grid
for the solution of a full nozzle flow, where a node will again appear

at the nozzle throat location.

The computed numerical grids, when employing twenty-one nodes, for
application to the solution of both subsonic and transition flow are
given in TABLE.3 ; the grid used for subsonic flow is also illustrated
in FIG.9. For both grids the number of nodes in each section of the
nozzle is the same as was present on the uniform grid; a node is also,
as stated, at the throat location. Both of the computed numerical grids,
corresponding to the two possible flow behaviours, will be identical up
to the throat position due to the assumption that the flow always enters

the nozzle subsonically.
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NUMERICAL GRID FOR NOZZLE FLOW WITH TWENTY-ONE NODES

NODE # SuB’ TRANS NODE # SUB’ TRANS’
1 0.0 0.0 11 0.845 0.845
2 0.182 0.182 12 0.876 0.877
3 0.354 0.354 13 0.919 0.920
4 0.496 0.496 14 0.985 0.986
5 0.614 0.614 15 1.074 1.075
6 0.690 0.690 16 1.180 1.181
7 0.737 0.737 17 1.308 1.308
8 0.772 0.772 18 1.457 1.456
9 0.8 0.8 19 1.629 1.627
10 0.820 0.821 20 1.822 1.820

21 2.0 2.0

TABLE.THREE

4.2 FORMULATION

The stationary principle corresponding to the motion is again
(3.29), although the discrete function (2.36) will now differ
numerically due to the non-uniformity of the basis functions. These are

thus best defined here in the general manner (2.43).

Making this function stationary will again result in a system of
equations. On application of the same numerical quadrature (2.46) a
system of non-linear equations for the unknown nodal amplitudes, rather
more compliex than (3.7), is produced,

in which
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f.(a) = CA_E [ 1+ 2
6 Ay A(E,/2)

5/2

ey [agth-aD™ (ag+ 2y (h- (E1i_32)2)5/2] .
) 2 8

f.(a) = CA_ E, [ 1+ 2
6 A8 AGS,~(E,_,/2))

1+ 2
6 A(S;)  A(S,+(E,/2))

= - a2)%/2 . 2,5/2
By [ayth - 2D (ay i+ ap) (h - (ay_+apHY]
6

2 8

|
ol ™

ey [ oyt - aD¥2 oyt ap (h - (e, rapH¥?] 2 0
2 8
[1=201)N11]

fn(@) = CAg By [ 1+ 2
Ay AZ-(Ey_,/2))

»

5/2

D] =

En-1 [ ay(h - Eﬁ) + (ay_4* a8y (h - (EN‘1t_EN)2)5/2] -
2 8
(4.4)

, in terms of the nodal positions and associated element lengths

By = Sip1 7 Sy (4.5)
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where

g= 2/ ]5/2. (4.6)

This system 1is again solved by Newton’s method. The initial data is
assigned in accordance with the convergence regions (3.31) derived

previously for twenty-one nodes in the formulation.

Therefore the piece-wise linear approximation to subsonic flow on
the irregular grid (FIG.10s3) 1is obtained by specifying the constant
initial data (3.31). The approximation to transition flow (FIG.11i¢) 1s
found by firstly deriving the supersonic solution vector (by specifying
(3.32)) and then, as before, by taking a linear combination of this with

the subsonic solution vector about the throat node (see (3.33)).

The variation of all of the remaining flow variables throughout the
types of flow is subsequently computed (FIGS.10,11). The graphs of the
relations between any flow variable pair throughout the flows may also

be derived.

Relative error

The relative error in the numerical solution of both subsonic and
transition flow is computed using (3.21), not only for the twenty-one
nodes that were used in the uniform grid, but in addition for the same

problem solved on an irregular grid of eleven nodes (see TABLE.4).
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DE-LAVAL NOZZLE

RELATIVE L2 ERROR BETWEEN NUMERICAL AND ALGEBRAIC SOLUTIONS

NUMBER OF NODES

SUBSONIC FLOW

TRANSITION FLOW

11 0.00408 0.00279
21 0.00144 0.00099

TABLE. FOUR

Comparison of TABLE.4 with TABLE.2 shows the significant 1increase 1in
relative accuracy obtained by the numerical solution of the present
motion, for the same number of nodes, on the irregular grid used in
preference to a uniform grid. The actual percentage decrease 1in

magnitude of the relative error is found in TABLE.5.

DE-LAVAL NOZZLE
PERCENTAGE DECREASE IN RELATIVE L2 ERROR

NUMBER OF NODES

SUBSONIC FLOW

TRANSITION FLOW

1
21

74.22
81.5

70.1
78.9

TABLE.FIVE
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The accuracy condition (3.22) is now met with eleven nodes in the
formulation and we see that this solution is, for both types of flow,
more accurate in terms of the norm considered than was the case for
twenty-one nodes on the uniform grid. This 1is a consequence of the
superior representation of the curvatures of the fluid speed near the

nozzle throat.
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CONCLUSION

A stationary principle has been constructed and used to determine
an approximate finite element solution for quasi one-dimensional duct

flow.

It is found that the numerical solution compares well with the
exact solution (see [4]). A uniform grid may be used if a relatively
small degree of curvature is present in the solution. Otherwise the
accuracy decreases significantly unless a large number of nodes are
employed in the formulation, this being computationally expensive. The
accuracy may however be 1improved dramatically by the use of an

appropriate fixed irregular grid.

There 1s clearly a need for an accurate, inexpensive, numerical
method, not dependent on a-priori knowledge of the solution, which will
generate an approximate solution automatically. In a subsequent report

an adaptive grid formulation will therefore be considered.
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