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ABSTRACT

An approximate (linearised) Riemann solver is presented for the
solution of the Euler equations of gas dynamics in three dimensions for
multifluid (ideal) flows. The solver incorporates operator splitting for
two and three dimensional problems. The scheme, without operator splitting,
is applied to the one dimensional problem of shock refraction at an

interface of two ideal gases.



1. INTRODUCTION

The linearised approximate Riemann solver of Roe [1] was proposed
in 1981 for the solution of the Euler equations of gas dynamics for a
single polytropic fluid. This scheme has proved successful when applied
to one and two dimensional problems (using operator splitting), (see
Glaister [2], [3], [4]). Roe [5] has also proposed an approximate
Riemann solver for one dimensional flows containing more than one poly-
tropic fluid: in particular, the scheme does not directly use interface
tracking. In the present report this scheme is extended to the three-
dimensional Euler equations for multifluid flows, incorporating the
technique of operator splitting. In particular, we show that there is
only one consistent choice for the cell averages required in this type
of scheme. We also find that, in the test problem considered, it is
possible to maintain a sharp interface between fluids by choice of a
suitable mechanism for obtaining second order accuracy.

In §2 we consider the Jacobian matrix of the modified flux functions
for the Euler equations for multifluid flows, and in §3 derive an approximate
Riemann solver for the solution of these equations. In §4 we describe the
mechanism used to obtain second order accuracy together with a sharp
interface, and in §5 we describe a one-dimensional test problem, and derive
the exact solution. Finally, in §6 we display the numerical results

achieved for this test problem using the scheme of §3 and §4.



2k EQUATIONS OF FLOW

In this section we state the equations of motion for an inviscid
compressible ideal fluid in three dimensions, and add a further equation
that enables us to deal with multifluid flows. We then derive the eigen-

values and eigenvectors of the Jacobian of the corresponding flux functions.

2.1 Equations
The Euler equations governing the flow of an inviscid, compressible

fluid in three dimensions can be written in conservation form as

Py ¥ div(pu) =0 (2.1)
(pE)t + div(puu) = - grad p (2.2)
e, +div(u(e +p)) =0, (2.3)
together with
e =—L— 4 Jpu.u (2.4)

vy -1

T
where p = p(x,t), u = u(x,t) = (4 (x,t), uy(x,t), uy(x,8)), p = p(x,t),
e(x,t) and y represent the density, velocity (in the three co-ordinate
directions), pressure, total energy and the ratio of the specific heat
capacities of the ideal fluid, respectively, at a general position
= )T d at ti t

x = (X%, 0%, and a ime

Equations (2.1)-(2.3) represent conservation of mass, momentum and
energy, respectively. If the flow contains more than one ideal fluid we
can add a further equation by realising that the value of y for each fluid
particle remains constant. This can be expressed mathematically as

BN =
=L = 0 (2.5)

where D/Dt represents the material derivative



D 3
St 3t WY (2.6)

i.e. the additional differential equation for the flow variable Yy = Y(x,t)

is

Y, ot (u.V)y =0 . (2.7)
Now from equations (2.1) and (2.7) we have
(by), + p(u.V)y + v div(pu) =0, (2.8)
and it can be shown (see Appendix) that
div(pyu) = p(u.¥)y + y div(puw) . (2.9)

Thus the additional differential equation can be written in conservation

form as
(pY)t + div(pyu) =0 . (2.10)

We are interested in the solution of equations (2.1)~(2.4) and (2.10)
in cartesian geometry. If we write Xx = (x,y,z)T, u = (u,v,w)T, equations
(2.1)-(2.4) and (2.10) give rise to the following system of hyperbolic
equations

w, +F +G +H =0, (2.11)
_t —X _y —z =

where

T
w = (p, pu, pv, pw, e, pY) (2.12a)
2 T
F(w) = (pu, p+pu®, puv, puw, u(e+p), puy] (2.12b)
2 T
G(w) = (pv, puv, p+pv?, pvw, v(e+p), ovy) (2.12¢)

iy
H(w) = (pw, puw, pvw, p-+pw2, w(e +p), pwy) (2.124)



with

e = P + %p(u2 + v o+ w2) S (2.12e)
y -1
2.2 Jacobian
We now construct the Jacobian A of the flux function F(w) , given
by
3F
A=-@, (2.13)

and find its eigenvalues and (right) eigenvectors, since this information,
together with a similar analysis for the Jacobians of G and H will
form the basis for the approximate Riemann solver.

Defining the momentum m = (u,v,o)T as m = p55=(pu,pv,pw)T and the
quantity T = py , equations (2.12a-b) and (2.12e) can be written in

the form,

W = (p,p,v,o,e,r‘) (2.14a)
u? wv  uo T

F(w) = (u, p+i=, £, £2, w(e+p), I (2.14b)

— e p" o

where
T u2 v o?

= vV, 0,e,T) = |—=1(|e - _— - el s 2.14c
p = p(p,u,v,0,e,T) [p ] [ Pt > ( )

These lead to the following expression for the Jacobian:



where the fluid speed ¢

the enthalpy H

0 1
2
X4 _g-u? (3-y)u
2
-uv v
-uv w
l‘lé‘i—- 2uH  H-(y-1)u?
L -w Y

0 0 0
-(y-1)v -(y-Hw -l
u 0 0
0 u 0]
-(y=-1)uv -(y-1)uw Yu
0 0 0

is given by

2 2 2 2

q° =u +v° +w

is defined by

YP 2

= + %q
o ply = 1)

and the 'sound speed' a is given by

2 = 1B
P

2.3 Eigenvalues and Eigenvectors

then

The eigenvalues Ai and corresponding eigenvectors

found to be

Al =u+a, e, = (1,
Az =u-a, e, = (1,
A3 =u, ey = (1,
A4 =u , 34 = (0,
AS =, &y = (0,
A6 =u , 36 (0,

T
u+a, v, w, H+ua, ¥v)
u-a, v, w, H-ua, v)
2 2 2 T
u, v, w, u+iva+ivwe, v)

0, v, 0, v, )T

0, 0, w, wz, O)T

a2 T

0, 0, 0,-——2>—, )",
(y-1)2

(2.15)

(2.16)

(2.17)

(2.18)

e, of A are

(2.19a)

(2.19Db)

(2.19c)

(2.194)

(2.19e)

(2.19f)



where

(2.199g)

A similar analysis can be carried out for the Jacobians

&
QL
fas

In the next section we develop an approximate Riemann solver using

the results of this section.



3. AN APPROXIMATE RIEMANN SOLVER

In this section we develop an approximate Riemann solver for the Euler
equations in three dimensions for multifluid flows incorporating the technique

of operator splitting. We follow a similar reasoning to that of Glaister [4].

3.1 wavespeeds for nearby states

Consider two adjacent states LAY L (Left and right) close to an

average state w , at points L and R on an x coordinate line. We

seek constants al, a2, a3, a4, us, a6 , such that
6
Aw = 2 o.e. (3.1)
to within O(Az) , where A(®) = (0)R - (0)L . Writing equation (3.1) in
full we have
Ap = al + o, + a3 (3.2a)

A(pu) = al(u+a) + az(u—a) + aju (3.2b)

A(pv) = a,v + a,v + AV + o,V (3.2¢)

Apw) = oW t oW + oW + oW (3.24)

2
Ae = al[jET + 3u? + v o+ w? o+ ua]
a’ 2 2 2
+ QZL?TI + du® + Iv° o+ wt - ua]

+ u3(%u2 + v? o+ 1w?)

2

2 2 a
+ a4v + asw - a6 5 (3.2e)
(vy=1)

and

A(py) = oY + oY + a3y + acy - (3.2£)



From equations (3.2a-d) and (3.2f) we have that

A{pu) - udp = a(a, - a,)

A(pv)

vip = a,Vv
A(pw) - wAp = a_w

A(py) - Yhp = a Y
and from equations (3.2a), (3.2e),

2 2
B bu | _ 2 PV I _ 1,2 bw | _ 2
A[y-l] + A[ 3 ] tuAp + A[ > } ivihp + A[ > ] tw Ap

a 2 2
+ az) + ua(a1 az) + a4v + o_w

2]

Using equations (3.3)-(3.6) together with oy + a, = Ap - a3

(3.7) yields the following equation for oy

2 2 2
I, S )

(y-1)? y(y-1)2

u? (puz
-5 Ap - A —2—-] + ul(pu)
2 (.2
o N _ ARV
5 Ap A\ 5 ] + vA(pv)
w? (pwz
- T Ap - AKT] + wA (pw)
where
L2 _ P
p

I i i ’ r
n addition al a2 4 5 6

(3.2a) and (3.3)-(3.6),

(3.7)

(3.8a)

(3.8b)

, O, O and o can now be calculated from equaticns



a, t o, = hp - o, (3.8c)
= _ Alpu) - ubp
a -, = (3.84d)
a
o = Alpv) - vip (3.8e)
4
v
ag = Alpw) = whp (3.8€)
w
o = Alpy) - vlp (3.89)
Y

We have made the assumption that the left and right states LAY !R are

close to some average state w , so that, to within 0(A?%) .

A(pU) = UAp + pAU , U=u, v, W Oor Y (3.9a-4)
A(pUz) = UZAp + 20UAU , U=nu, v or w (3.9e-q)
and
A[Yﬁl] - ;¥i - S (3.9h)
(y-1) 2
In that case equations (3.8a-b) give
2 2
2 =2 _ bBo
ST %3 T oop A0 - oy (3.10)
i.e
B = b 2L o (3.11)
3 a2

Finally, equations (3.8c-g) become



_bp
al + a2 : 5
a
o -, -ty
1 2 -
a2
=P
a4 = Av
-k
a5 = Aw
a. = %-AY P

to give the following expressions for al, a2, a3, a4, as
i
a, = ——(Ap + padu)
2a’?
il
o, = —(Ap - paldu)
2 2
2a
ay = Ap - fp
a2
o
% T v bv
= Bl
Qg = m, Aw
- L
Qg = 5 Ay

We have found al, a2, a3, a4, as, a6 such that

to within O(AZ) , and a routine calculation verifies that

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17a)

(3.17b)

(3.17c)

(3.174)

(3.17e)

(3.17f)

(3.18)



(3.19)

>
|
il
Il ~~10N
>
Q
o

to within O(Az) . We are now in a position to construct the approximate

Riemann solver.

3.2 Decomposition for general Wer W
— i

Consider the algebraic problem of finding average eigenvalues

Al, A2, A3, A4, AS' X6 and corresponding average eigenvectors
31, 32, 93, 34, 25, 26 such that relations (3.18) and (3.19) hold exactly

for arbitrary states EL’ Wp v not necessarily close. Specifically, we

~ o~ ~

~7 ~ ~ i~ ~ N N
seek averages p, u, v, w, a, vy, 8§, € and «k in terms of two adjacent

states EL' ER (on an x-coordinate line) such that
6 ~ "
Aw = ) a.e. (3.20)
j=1 ]3]
and
6' Laadiian el
AF = Y X,a.e. , (3.21)
=1 J )]
]_
where
e) = (® - (@ .
A(®) = (&) - (&) (3.22a)
T
w = (p, pu, pv, pw, e, py) (3.11b)
2 T
F(w)= (pu, p+pu“, puv, puw, u{e+p), puy) (3.22c¢)
e = £ 4 1pu? + 1pv? + dpw? (3.224)
v-1
A1,2,3,4,5,6 = u+a, u-a, u, u, u, u (3.23a)
~ ~N A~ e~ o~ o~ o~ T

(1, u+a, v, w, 3, ¥) (3.23b)



o

&92

Q2

2

=%

2

Q2

Q1

= (1,

= (0,

= (0,

2Pl <ol

<o

- 12 -

B-2, v, W, €, Y)
u, v, w,

0, %, 0,3, ot
0,0, %, W, F
0, 0,0, R, DT

Av

Aw

Ay .

We note that no particular form for the representation of the fifth

component of

The problem of finding averages

~
(S

1

14

~
e

2

and

~

e is assumed.
-5

~ o~

P, 4,

~

Vo,

~ o~

w, a,

Yo

~

S,

~
€

and

~
K

subject to equations (3.20)-(3.24f) will subsequently be denoted by

(N.B. The quantities

components of

e

_1’

[=]

—2

ol
§, ¢

and

and «

26 ’

respectively.)

(3.23¢c)

(3.23d)

(3.23e)

(3.231f)

(3.23g)

(3.24a)

(3.24b)

(3.24c¢)

(3.244)

(3.24e)

(3.241f)

(*) .

denote approximations to the fifth



The solution of problem (*) is sought in a similar way to that
given by Glaister [3], [4] in the case of a single non-ideal fluid, by
Roe and Pike [6] in the case of a single ideal fluid in one dimension
and by Roe [5] in the ideal multifluid one dimensional case. We note that
problem (*) is equivalent to seeking an approximation A to the Jacobian A
with eigenvalues Ti and eigenvectors Ei , which is an alternative
approach used in the single fluid case by Roe [1]. Furthermore, the
Riemann solver that we construct must have the property that it reduces
to the scheme of Roe [1] in the case of a single fluid, i.e. vy = constant
throughout the flow, and to the scheme of Roe [5] in the one dimensional
case.

The first step in the analysis of problem (*) is to write out equations

(3.20) and (3.21) explicitly, namely,

. ~ ~ ~ (3.253.)

Ap = onl + o, + %y
Apu) =0 (W +3) +a,(W-3) +7a, (3.25b)
A(pv) = A,V + 0,V + 0V 4 a,v (3.25c)
A(pw) = oW + QW + oW+ oW (3.254)

~, ~ ~~2 ~e ~
g + a,v: + a.w° -+ a_k (3.25e)

v-1 2 1 2 3 4 5 6

Mpy) = @Y + o,y + Eﬁ + '&'6? (3.25f)

A (pu) :31(E+3) + o, (W - ) +a'3?; (3.25g)

Ap + pu®) = ap + A(pu?) =, (W + D)7 + T, - 3 + T (3.25h)

Alpuv) - E’T (0 + )V + 3’2(3 - DY+ 8[3’{3?7 + &“’4?{\? (3.251)



Apuw) = 51(3 + )W o+ 52{3 - )W+ EaGW + ESGW (3.259)

bute + p)) = A{g_f] . A[%]

= - .25k
al(u +a)d + a2(u a)e + a3u£q + o uvt o+ ooguwt o+ oo uK (3 )
A(puy) = 51 W+ a)y + '&'2('6 - DY + 53'&"{ + ?&’6?1'{(’ (3.251)
where
g? =u? + v + w? (3.26)

as before, and for convenience we have written

g2 = u? + 92 4+ W, (3.27)

Equation (3.25a) is satisfied by any average we care to define, while
(3.25g) is the same as equation (3.25b); thus it remains to solve equations

(3.25¢c-1). From equation (3.25g) we have

A(pu) = u(a1 ta, + a3) + a(oL1 - az)
= Unp + phu , (3.28)
and from equation (3.25h) we obtain
2 _~2 ~s ~ las a A o) —N
A(pu©) u (OL1 + oo, + a3) + 2ua(o¢1 a2]
= W2pp + 20aAu . (3.29)

Substituting for 3 from equation (3.28) into equation (3.29) yields

the following quadratic equation for u

U% - 2uA(pu) + A(pu?) =0 . (3.30)

Only one solution of equation (3.30) is productive, namely,



~ _ Alpu) - Aaow)? - 08 (pu?)
Ap

Voo u. +vVp_
TP T7PRYR

Yoo +Vp_

L R

~

which, on substituting u into equation (3.28), gives

~ b - A
S = (pu) D:/pL—pR.
Au

From equations (3.25c-d) and (3.25f) we have

A(pv) = vAp + phv

A(pw) = 'v\\;Ap + rEAw

A(pY) = ybp + phy
i.e
~ Vo Vo_
~ _ Apv) - pAv _ Pr, v ¥ YPr Y
Ap VpL i P
~ _ Blow) - paw _ 'PL "L * VPR YR
Ap VoL + VpR
and
? : A(py) - pAy _ pL YL * pR YR
—
Ap CHE VDR

~ o~ o~ o~ ~
We have now determined p, u, v, w and Yy and can now show that

A(pU?) - 2PUAU - T%bp = 0 U=u, v or w
A(puv) - Bﬁﬁv - %th - thu =0, V=v, w or Y

(3.

(3.

(3.

.31)

.32)

33a)

.33b)

.33¢c)

.34a)

34b)

34c)



2 ~N2 ~2 2 2
A[EEE_} - EE—'Ap - puUAU - U py =P (AU) "Au U=u, Vorw (3.37a-c)
2 2 2(/p. Vo )?
2 ( Pt pR)
Y. P YgP
L' L R
=Y~ N /o, p -0 PR pR(YR_W]i
r_\[ Y8p | - uA[—Y—E—] = pAu i (3.38)
y = 1 Yy -1 o
pL * /SR
and
2 2 - )
/ELUL " /EﬁUR ~y plau)”
- U® = = ; U=u, VOor w (3.39a-c)
Yo + Vop Vo + Vop)!

all of which will be used later. From equations (3.36a-c) and (3.24a-1)
we can see that equations (3.25i-]) and (3.251) are automatically satisfied.
We are now left with equations (3.25e) and 3.25k). Now, cubtracting

equation (3.25e) multiplied by T from equation (3.25k) gives

2 2
[ Yup ] _ uAE;ﬂl_q n A[puq } _’EAFELi =a1a6 _ azae , (3.40)
y -1 y -1 2 2

and using equations (3.24a-b) together with ?éT = ;%T - 1 equation

(3.40) yields

~ ~ 2 N_N o - ~ ~
R S R CNL~SIRLED

Yy - 1 y -1 2 2 2a 2
(3.41)
If we add equations (3.35a-c) each multiplied by %- and subtract from
the result obtained by adding equations (3.37a-c) we find that
2 2 =2 ~2
A[p—“—q—] - uA[&] S PAT pp 4 EPBS A% ¢ v 2+ (Aaw?) . (3.42)
2 2 2 2

Finally, adding equations (3.39a-c), equation (3.42) can be written as



= 17 =

2 2 o~ (Vo_ q +
A[puq ] _ uAqu } _ plu L 'L
2 2 2 (/o—L + Vo)
where
q2 = U2 + V2 + W2 ’
and
2 2 2 2
= +
r T mEw T VLw) T VLR

Thus, using equations (3.38) and (3.43), equation (3.41)

S+ e (/ELHL+'/E)—RHR)~ {’5’—’5 ~]
] pAu + — - ujbp
2 /EL + /Eﬁ 2a
where
Y p
u ) L(RPL(R) ‘3
=i ( -1
PL(r) ‘YL (R)

Therefore, if we define a mean enthalpy H , by

Vo H. + Vp.
~ P Mg Pr B

~ R
- 7
/B—L Py

where the enthalpy H is given by

+ ig
p ply - 1)

equation (3.45) becomes

LT e o~
LG RO BipAu + . AJE - ullp
2 2a J

L(R)

(3

(3

.43)

.44a)

.44Db)

.44c)

.45)

.46)

.47)

.48)

.49)



We now focus attention on equation (3.25e) to be solved in conjunction
with equation (3.49). Using equations (3.24a-f), (3.26), (3.27) and

(3.35a-c) enables us to rewrite equation (3.25e) as

aAl—R | - _Ap_ _pkby A a— bp GNE—u)pAu_ (3.50)
y - 1 Yy -1 Y 2 2 v - 1)3% 2a J
If we now introduce the internal energy i = b then we see that

ply-1)

(Y - 1)a

- ] - bp = (? - DA(pi) - A((Y - 1)01)
Yy -1

=~ Ay . (3.51)

= ~ oo tL o PR
~ pp iy T Ve i L DL(YL-I} R pR(YR—l)
1 8 i = (3.52)
pp ¥ /ER /EL + /ER

and using equation (3.51) enables us to rewrite equation (3.50) as

‘5+E~q—~a—-i—P+ GNE—upAu+(:—§+ = oy = 0 (3.53)
2 2 Y-lJa2 2a ty Yy -1
Therefore, in order to complete our Riemann solver we need to solve

equations (3.49) and (3.53).

There is only one consistent choice for the remaining averages

~ o~ ~

a, ¢, Z and « in order that equations (3.49) and (3.53) are satisfied

for all variations Au, Ap, Ay i.e.



1 rE_-H=0 (3.54a)
2
UL S = 0 (3.54b)
2 2 Y -1
e-c Y=o (3.54c)
2a
and
S —=—=0. (3.544)
y Y- 1

o AN o " R o =~ Y o )
Therefore, as we have prescribed the averages 0., Y. H, i, u, v, w and

~

hence q2 we solve equations (3.54a-d) to give the following averages

~

~ Y ~
for a, §, € and « :

32 = Y- 1n®HE- 13 (3.55a)

§ =H+ ua = + %tg° + ua (3.55b)
y -1

e =H - ua == + ¥g“° - ua (3.55¢)
y -1

and (3.55d)

-1
oG oH
By symmetry, similar results hold for the Jacobians 3w ' w

Summarising, we can now apply a three-dimensional Riemann solver
for the Euler equations for multifluid (ideal) flows using the technique
of operator splitting. We incorporate the results found here, together
with the one dimensional scalar first order algorithm given in [6], and
perform a sequence of one dimensional calculations along computational
grid lines in the X, y and z-directions in turn. The algorithm along

a line vy = constant, =z = constant can be described as follows.



- 20 =

Suppose at time level 1N we have data EL' ER given at either
end of the cell (xL, xR), (on a line vy = Yor 2 7 zo), then we update

w to time level n+1 in an upwind manner. Schematically, we increment

w as in Fig. 1.

n 1 - 5 NEE SAEyST
x 3 33 Ax 373
j=1,2, 3,4, 5,6
2 1 ' 1 1
L 5 R L
AJ 0 A. <O
J
Figure 1
where Ax = XR - x_. , At 1is the time interval from level n to n +1
and X. E,, Z, are given b
el ikl g o
~o =~+~ N_N i~ i~ ~ ~~
A1,2,3,4,5,6 u a, u a, u, u, u, u
g - r 3 ( 3 '3 3 (A PR ¢ 3
£1,2,3,4,5,6 1 ' 1 (1Y), (o), (o), [ O
U+ a Q- a a 0 0 0
v v v 1 0 0
W w w 0 1 0
Ay BN ey IR P21 I 1 I 1 I
Y-1
N Y s S Y P . YJ \.OJ LO \ 1 J
a = —(4p + padu), —(Ap - padu), Ap - —, pAv, pAw, pAy
1,2,3,4,5,6 ~y ~5 ~3
2a a
L Yoo u + Vo u
p = vprR ' U =r— — U=wu, v, w, Y, H or i
Vo + /b
L R



p ~ o~
i = ———— and A(®) = (@ - (® . W ote that factors v, w have
T (®) (@) = (& en '
been taken out of E%, ES so that Nz, ES will not become indeterminate,
and the factor ? has been taken out of EG . Similar results apply

for updating in the y and =z directions.

The Riemann solver we have constructed in this section is a
conservative algorithm (also when incorporated with operator splitting)
and has the important one-dimensional shock capturing property guaranteed
by equations (3.20), (3.21) (see [1]). Problems may occur, as with all
operator split schemes, when attempting to capture a shock that is oblique
to the grid.

In the next section we describe the mechanism used to create a second
order algorithm which is oscillation free, and maintains sharp shock and

contact discontinuities.
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4. SECOND ORDER ALGORITHM

In this section we describe the mechanism used to make the algorithm
of §3 into a second order, oscillation-free scheme.

We begin by describing the scalar algorithm of Roe and Pike [6]
written in the flux limiter notation given in Sweby [7]. The scheme
incorporates the device of Sweby [8] needed to disperse entropy violating
solutions, and can be extended to include irregular grids (see Glaister ([9]).

Consider the one dimensional scalar equation
u + f =0 (X, t) € (_°°[ m)X[O, T]

where u = u(x, t) and f = f£(u) . A class of second order oscillation-

free schemes for the solution of equation (4.1) can be written as

-1 L L R
. + . - b + b,
By-1 ¢J—% j-3% j-%

[
It

j=1,2,... (4.1a-b)

[
i

R R L
u., + . - b, + b’
j ¢J—é j-% j-%

where uj ul denote the approximations to wu(jAx, nAt), u(jAx, (n+l)At) ,

respectively. In addition
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¢j—§ ( Visy) (uj uj_%) Ll Vioy) (uj_% uj) (4.2a)
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_ ot L(R) _ At L(R) _
vj—é = aj_% i vj_% e aj_% (4.3a-b)
u, , =¥, +u, ), ¢t = d(lcl + o) (4.4a-b)
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X,
j-% 5. o%
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and VY(r) is a flux limiter,
Vv(r)

or the 'Superbee'

limiter
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(see [7]) e.g. the 'Minmod' limiter

max(min(l,r), Oj

Yy(r) = max(min(2,r), min(1,2r), O)
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(4

(4.

(4.

(4.

(4.
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.11)
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This scheme can be represented in schematic form as a first order increment

stage together with a second order transfer stage as seen in Fig. 2.

)
~

Figure 2

The algorithm given by equations (4.1a)-(4.10b) has the property that

L R .
one or other of ¢j g0 b 53 is zero, except at expansions.
=2 -2

We can now apply this algorithm to each of the plane waves in the
approximate Riemann solver of §3. The schematic representation for updating
w at time level n to time level n+1 using the scheme given by

equations (4.la)-(4.10b) is given in Fig. 3.

L j-%
_k
2] 3\\)
& )™
L,j-% j-%
i>k /‘ jak
L
j-1 J
Figure 3

The algorithm consists of an increment stage and a transfer stage, and

the quantities given in Fig. 3 arc defined as follows:
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R EAAS: L j+i
Lo %[1 b ']{ik }q
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- w7

where At 1s the time increment from level n to n + 1 ,

Ax = x - x =x, - X ’ Kj_% Ej_% Zj_% for k =1 -6 are given

R L b j-1 k " Tk " =k
in 83, Y 1is one of the flux limiters given by equations (4.11), (4.12)
and {X}q denotes the qth component of the vector v . (N.B. The
superscript j-3% on Xk, E;, E% refers to the interval (xL, xR) i.e
(Xj—l’ xj) .)

. . L,j-%|R, j~%
It remains to choose g , i.e. the component of QR Qk used

in the limiter. We need to choose the most sensitive component of the
conserved vector w , and this is usually the density, p . The use
'Superbee' limiter (4.12) enables contact discontinuities to remain sharp,
provided we choose g = 1 . Unfortunately, this does not guarantee that
the interface between fluids, represented by a jump in the variable ¥y ,
remains sharp. Following numerical experiments, we advocate using the

L j-3

sixth component (g = 6) of ¢

R j-% . .
$r [ Ek ) , corresponding to the variable

pY , to determine the part of the limiter chosen. 1In this way, we find
that contact discontinuities remain sharp both in the density p , and
in Yy when the fluids either side of the discontinuity are different,
i.e. at an interface.
In the next section we describe a test problem for the Euler eguaticns

for multifluid flows, and derive the exact solution.
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5. A TEST PROBLEM

In this section we describe a test problem in multifluid gas dynamics
and, using the Rankine-Hugoniot shock relations, we derive the exact
solution to this problem.

The one dimensional test problem we look at is that of a shock wave
passing from one gas to another. There are two cases to consider (see [10]);
however, we shall deal only with the case where there is a transmitted and
a reflected shock.

Consider a shock wave travelling in gas 1 with initial conditions
given by Fig. 4. After the interaction of the shock at the interface of
gas 1 and gas 2 the exact solution consists of a transmitted shock and
a reflected shock together with a contact discontinuity whose characteristics

are given by Fig. 5.

shock with ,
o intexrface
speed s,
. = I =
P =0y P Py i p = 02
u = uy u=20 i u=20
> Sy ! t =20
P =Py P =P, ! P =p,
]
]
Y =Yy Y =Yy i Y =Y,
a 3
Figure 4
reflected contact transmitted
shock with discontinuity shock with
speed s, with speed cg speed S5
p = Ol p = 04 ; p = 03 p = 02
= 1 = =1 (@ S
u = uy u o= uy | u = u, u = )
S, & r—e»cs ——> 53 t > ==
p = p, P = Py i P = Py p =P, d
|
Y =Yy YEY, | Y =Y, Y =Y,

Figure
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The Rankine-Hugoniot shock relations that hold across a shock wave.

are again given by

s = [pul (5.1a)
[p]
[p + pu’]
s = (5.1b)
(oul
and
s =ife b pll (5.1c)
[el
where s 1is the speed of the shock, [v] = v+ - v denotes the jump in

+ -
v across the shock, and v , v denote the values of v behind and in

front of the shock, respectively. From équations (5.la-b) we can show that

+ - + - + -+ -
P -plp -9 ) =pp (u -u)? (5.2a)
and from equations (5.1la), (5.1c)
-1 + - + -+ - + + - - + - + - + + - -
(Y—z—)(u ~u) %@ +u)pp =yup -uplle -p) -(p -p)leu -pu)
(5.2b)
In particular, if u = 0 then equations (5.2a-b) yield
p+
+ =t
L el (5.3a)
- +
P u B: + 1
b
and
w2 - (@ -p ) =p)
u ) =
pp
where
p o= Lzl . (5.3¢)
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Therefore, for the initial shock travelling from left to right we have

EX
b, !
o | [ S 5.4
Py B Py (5.4a)
u, — + 1
.1p2

(p1 - pz)(p1 - 02)

u, = (5.4Db)
P1Ps
P
and s1 = ——— (5.4c¢)
P1 = Py
where
Yy~ 1
Lll _T-T-l_ . (5.44)
1
Py
Thus, once we have chosen Yl’ p2, p2 and the shock strength 5— , the
2

initial shock is specified.
To determine the exact solution after interaction we need to find
P3r Pyr Uzs Pgys Sy S, and cg subject to the shock relations (5.la-c).

From equations (5.3a-c) for the transmitted shock

P3
u —
2 p
2
Py = P, b, (5.5a)
— + 1
U2 p2
and
4
{(p, = pP,) (P, - p,)
uy = 3 2 2 2 (5.5b)
P3P;
where
Y, = 1
b, = — (5.5¢)
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and from equation (5.2a) for the reflected shock

o, (p, - p,)
0. = 1 L . (5.5d)
(93 - Py - ey (uy - u1)2]

If we write down equation (5.2b) for the reflected shock and substitute

for o from equation (5.5d), the following non-linear equation for

4

p3 is obtained

_ _ _ _ _ _ _ 2
Yy (83Py = wp e, (py = p) - 0,y (ups —wp ) (py - Py -0y (uy - up?)

2
(py = p) % uy + pjui(py - p)(py by - (uy -~ up?)
_ _ _ 2 2 _ _
Flyg = D(uy —u)%(uy +ue, “(py p,) 0 (5.6)
where uy = u3(p3) is given by equations (5.5a-b). Aas the reflected shock

is usually a weak shock, we solve equation (5.6) by the method of bisection

for p3 close to py where p3 > p1 . The exact solution is now completely
specified since p3, u3, p4 are given by equations (5.5a), (5.5b) and
(5.5d), respectively. In addition, the shock and contact speeds Sy Sg
and c, are found to be
p,u_ - p,u
s, .43 11 (5.7a)
Pg = Py
pu
Sy = N (5.7b)
P3 7 P
and
c, = Uy . (5.7¢)

In the next section we give the numerical results obtained for tne

test problem described here.
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6. NUMERICAL RESULTS

In this section we show the numerical results obtained for the test
problem given in §5 using the Riemann solver given in §3 and the scalar
algorithm given in §4.

Each of the figures refers to the one dimensional test problem

described in §5. The equations governing the flow are

Zt i EX - _9 (6
where
T
W= (p, pu, e, py) (6.
2 T
F(w) = (pu, p+pu®, u(e+p), puy) (6
and
_ b 2
e M < 1 + tpu” . (6.
The particular case we test is the refraction of a shock wave at an air-
helium interface, i.e. Yl =-% and Y2 = % .  The parameters of the
initial shock are p, = 1-0, Py = 0-2, with p, chosen so that the shock
p
strength El takes the three values o, 100 and 10, and pl, ug s1 are
2
given by equations (5.4a-d). 1In each case we take 100 mesh points in

0 x £ 1 , and choose the output times to be before and after the shock

IA

has been refracted at the interface. All computations have been done
using the 'Superbee' limiter (4.12). The shock is initially at x = 0-1
and the interface at x = 0-4

Figures 6, 7, 10, 11, 14 and 15 refer to the time just before the
shock is refracted after 55 time steps with At = 0-002. Figures 8, 9,
12, 13, 16 and 17 refer to the time after the shock has been refracted
after a further 75 time steps with At = 0-002. The flow variables
p, U, p, Y are plotted and Figures 6-9, 10-13 and 14-17 refer to the

p
1
cases — = «, 100 and 10, respectively. The solid line represents the

Py
exact solution.

.la)

1b)

1)

14)



We see that in ecach case the approximate solution gives a good
representation of the exact solution, in particular the correct shock
speeds have been attained, and the contact discontinuity remains quite

sharp.
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7. CONCLUSIONS

We have extended the one-dimensional results of Roe [5] to give a
three-dimensional Riemann solver incorporating the technique of operator
splitting. 1In particular, we have shown that the particular averages
sought are unique. In addition, we have achieved satisfactory results

for a problem of shock refraction.
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APPENDIX

Figy
Consider a general orthogonal curvilinear co-ordinate system

.
.

(xl, x2, x3) where a line element gg is given by

ds = h dx,x, + h dx,Xx, + h,dx.x

= 17141 2 2—2 3733

~ A

and ﬁl’ 52, §3 are orthogonal. The vector Ei is of unit length and

parallel to the co-ordinate lines with X increasing. Consider also a scalar .

: x3) = VvV,X, + V. X, + V_X

field a:q(x1, X x,) and a vector rfield X§= vix 134 SX. 3%3

2 %

e X

1 2

Then the definitions of div v and, V. are as follows

div v = ———l——-ii (h.h. v, ) + Ji—(h h
Y% 1

.
LT R, |ox, 2731 Vol *ax, (yhypYs)

32 ax 1723

1 3 1 2 3
and
v=Lg O 1l 3 1. 3
— hl—i Bxl h2—2 3x2 h3—3 8x3
Thus,
* div(aBv) SYeou S (h h oBv,) + = (h,h_oaBv.) + Ji—(h h_ oBv.)
HRORY) = W hon |ax, ‘M %PYy ax,, 1 r13%PY) ax, - 12%FY3
17273 1 2 3
=1 a2 (hh,Bv,) + o> (hh.Bv.) + o <= (h h.Bv.)
T honono Y ax, 23RV ¢ 3x. 1M3RY ax., 12RV3
1723 1 2 3
oo a0,
TR o LA R PR L LA PR R UL PSR ] =
: 1 2 3 o
1 [a 3 3 ]
= q +— (h,h Bv,) + — (h,h Bv.) + — (h h_Bv.)
h1h2h3 Bxl 2371 3x2 13 2 8x3 17273
+B[Vﬂ o e, 2a
1 axl 2 sz 3 9 3
i.e
div(an) = a div(Q!) + B(x.z)a
since § % % arc orthonormal.
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