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Abstract

We review recent advances in Galerkin and Least Squares methods for
approximating the solutions of first and second order PDEs with moving
nodes in multidimensions. These methods use unstructured meshes and
minimise the norm of the residual of the PDE over both solutions and
nodal positions in a unified manner. Both finite element and finite volume
schemes are considered, as are transient and steady problems.

For first order scalar time-dependent PDEs in any number of dimen-
sions, residual minimisation always results in the methods moving the
nodes with the (often inconvenient) approximate characteristic speeds.
For second order equations, however, the Moving Finite Element (MFE)
method moves the nodes usefully towards high curvature regions. In the
steady limit, for PDEs derived from a variational principle, the MFE
method generates a locally optimal mesh and solution: this also applies
to Least Squares minimisation.

The corresponding Moving Finite Volume (MFV) method, based on
the I, norm, does not have this property however, although there does
exist a finite volume method which gives an optimal mesh, both for vari-
ational principles and Least Squares.

1 Introduction

In this paper we consider standard Galerkin and Least Squares methods on mov-
ing meshes in multidimensions. The capabilities of mesh movement in approx-
imating the solution of PDEs are yielding their secrets slowly, largely because
there have been significant difficulties in handling the complex nonlinearities
inherent in the problem and in controlling the mesh to prevent tangling. In the
recent past techniques employed have included various forms of equidistribution
([11-[3]), usually based on solution shape criteria, and minimisation based on the
residual of the PDE ([4]-[6]). Equidistribution is a highly effective technique for
the distribution of nodes in one dimension. However, there have remained ques-
tion marks over how to choose the equidistribution criteria and to what purpose
(although see [7]). Minimisation techniques, on the other hand, allow immediate
access to multidimensions but here node distribution is less well understood. In
this paper we concentrate on residual minimisation as the criterion for moving
the nodes.

We begin by recalling the basis of the Moving Finite Element (MFE) method
of Miller ([8]-[12]) together with some of its properties. We then go on to
discuss Lo Least Squares methods on moving meshes, with examples, and the
relationship between the two methods in the steady case.

In the second part of the paper we describe Moving Finite Volume and
discrete I; Least Squares methods are proposed using the same approach. These
methods have their own character and their properties differ from the L, case
when the nodes are allowed to move.



Finally we discuss local optimisation methods for minimising these norms
and conclude with a summary of the schemes and their properties.

2 Finite Elements

The Galerkin finite element method for the generic scalar PDE
u = Lu (1)

where L is a second order space operator, e.g. Lu = —alyu +002u, is a semi-
discrete method based on a weak form of the PDE. One way of deriving the
weak form is by constructing the unique minimiser of the Lo residual of the
PDE with respect to the time derivative Uy via

min |V — LU}, 2

where U is the finite-dimensional approximation to u. Differentiating (2) with
respect to U; and using an expansion of U in terms of basis functions ¢;(z) in

the form
U =3 Uit)¢;() (3)

yields the Galerkin equations
(¢5,Ue — LU) =0 (4)

where the bracket notation denotes the Ly inner product and ¢; is the j’th basis
function for the finite-dimensional subspace which contains U and therefore U;.
We take the functions U and Uy to be piecewise continuous and the basis function
¢; to be of local finite element type. The resulting matrix system may be solved
in time using a suitable ODE package in the style of the method of lines.

2.1 Steady State

In principle the Galerkin method may be used to solve the time-independent
equation Lu = 0 by driving solutions of the time-dependent equation (1) to
steady state.

To reach steady state the velocity Uy in (4) may be replaced by an explicit
time discretisation with index n and time step 7 and the discrete equation

<¢j,M_LUn>:0 (5)

T

used as an iteration to drive U™ to convergence. The steady state solution
satisfies the weak form

(65, LU) =0 (6)
Not only may the Galerkin equations (4) or (5) be used to iterate to steady
state but the mass matrix may be replaced by any positive definite matrix.



2.2 An Optimal Property of the Steady Galerkin Equa-
tions

If the differential equation Lu = 0 can be derived from a variational principle,
i.e. there exists a function F(z,u, Vu) such that

oF oF

=~ + Vo w
then since
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the Galerkin equations (6) provide an optimal U for variations of the functional

1(F) = [ Fla,u, Vu)da (9)

in the approximation space of U. The functional (9) is minimised by solutions
of the weak form (6) with LU given by (7), i.e. solutions of

OF OF
<¢jvw>+<v¢jaﬁ> =0 (10)

In (10) integration by parts has been used over a local patch of elements sur-
rounding node j (see fig.1) with the assumption that the finite element basis
functions ¢; vanish on the boundary of the patch. Not only may the Galerkin
equations (4) or (5) be used to iterate to steady state but the mass matrix may
be replaced by any positive definite matrix.

In particular, if F(z,u, Vu) = § (f(z, u, Vu))z, the functional

0= 3 [ Hew V) de (1)

is minimised by solutions of the weak form

af? af?
<¢j,%>+<V¢j,£ﬁ>=0 (12)

3 Moving Finite Elements

The Moving Finite Element (MFE) procedure ([8}-[12]) is a semi-discrete moving
mesh finite element method based on the two coupled weak forms of the PDE



Figure 1: A local patch of elements surrounding node j.

arising from the minimisation in section 2 when the node locations are allowed
to depend on time. Thus U becomes an explicit function of the X ;(t) (the nodal
positions). Then, using the result

ou

oX;

= (=VU)¢; (13)
which holds if the basis functions ¢; are of linear finite element type (see [8],[9]
or [13]), the derivative of U with respect to ¢ becomes

ou ou ou dX
Wlmoving& 6t fwedX Z

=—+Z( vvm

=y -VU. X (14)

say, where U is given by (3) and U and X are independent functions of ¢
whose time derivatives have expansions

R . dX X
—W—Zj: —9;, K_E_Zj:ﬁ_d” (15)



(cf.(3)). These functions are taken to be continuous, corresponding to the evo-
lution of a continuous linear approximation.

Using (14), minimisation of the residual in (2) over the coefficients Ui, X. ;
then takes the form
min [ -vU. X ~LU| (16)
Uj, X

which, using (15), leads to the MFE or extended Galerkin equations

2
Lo

(4,0 ~VU. X ~LU) =0 (17)

((-VU) 3,0 -VU. X ~LU) =0 (18)

The resulting ODE system may be solved by a stiff ODE package as in the
method of lines.

The method has been analysed in [10] and found to possess the following
properties:

Property 1. For scalar first order time-dependent PDEs in any number of
dimensions the method is an approximate method of characteristics.

Property 2. For scalar second order time-dependent PDEs in one dimension
the method repels nodes from inflection points towards areas of high curvature.
At steady state the nodes asymptotically equidistribute a power of the second
derivative.

However the method also has intrinsic singularities.

e If VU has a component whose values are equal in adjacent elements
(dubbed parallelism by Miller [8]), the system of equations (17)/(18) be-
comes singular and must be regularised in some way (see [8]-[12]).

o If the area of an element vanishes, the system again becomes singular and
special action is required.

Each of these singularities also leads to poor conditioning of the correspond-
ing matrix systems near to singularity. For these reasons the method is usually
regularised by adding penalties the functional in (16).

3.1 Steady State

In the same way as for fixed meshes the MFE method may in principle be
used to generate weak forms for approximately solving the steady PDE Lu =0
by driving the MFE solutions to steady state (assuming convergence). From
Property 2 of section 3.1 it may be expected that for scalar second order PDEs in
one dimension the nodes will converge towards areas of high curvature. Property
1, however, indicates that for scalar first order PDEs the nodes continue to move



with characteristic speeds and are not therefore expected to settle down to a
steady state.

To reach a steady state we may replace the velocities U and X by explicit
time discretisations with index n and time steps 7,0 and use the resulting
equations (17)/(18) to drive U™, X™ to convergence, provided that is possible.
Since we are only interested in the limit the mass matrix may be replaced by
any positive definite matrix. The steady state solution satisfies the weak forms

<( g )¢,-,LU>:0 (19)

We note that from (16) the MFE method in the steady case implements the
minimisation
min || LU|17, (20)
U.X

Although [ and X no longer appear in LU, the minimisation is over all functions
lying in the space spanned by the {¢;,(—VU)¢;}. In one dimension this space
is also spanned by the discontinuous linear functions on the mesh (see [10])
(provided that U, is not equal in adjacent elements).

3.2 The Optimal Property of the Steady MFE Equations

It has been shown in [13] that the optimal property of section 2.2 generalises
to the steady MFE equations (19). If Lu = 0 can be derived from a variational
principle then, as in section 2.2, solutions of the weak forms (19) provide a local
optimum of (9) over the approximation space spanned by the set of functions
{¢;,(—VU) ¢;}. We shall refer to this property as the Optimal Property. This
result essentially follows from (14) modified to apply to variations, i.e.

6U|moving2(_ e 6U|fia:ed£ - VU(SK (21)

The MFE method may therefore be used as an iterative procedure to generate
locally optimal meshes (see [13]). If desired, the MFE mass matrix may be
replaced by any positive definite matrix (see [14]).

Substituting (7) into (19), the functional (9) is minimised by solutions of the
two weak forms

oF oF
<¢j,55>+<v¢j,ﬁ> =0 (22)
oF OF
<¢j,'5£>+<V¢j,<F-VU.ﬁ>>—O (23)
where the identity
oF OF OF oF
V. <F— VU'WU—) = 5z + B_iVU_ (Va—v—ﬁ) vU (24)



has been used to transform the second of (19) into the equivalent equation (23)
which is formally suitable for piecewise linear approximation. In carrying out the
integration by parts to arrive at (23) we have used the fact that the continuous
piecewise linear finite element basis function ¢; vanishes on the boundary of the
patch.

In particular, for the least squares functional (11) the weak forms are

of? of?
(60,50 ) + (V5 25 ) =0 (25)

2 6 2
(6,55 )+ (vor (- VU)o (26)

4 Least Squares Finite Elements

Notwithstanding the use of the Ly norm in the construction of the Galerkin
and MFE methods in sections 2 and 3, from a fully discrete point of view the
procedure used there is a restricted least squares minimisation because it is

carried out only over the wvelocities Uj and X;. The variables U; and X; are

treated as constants, independent of UJ; and Xj and the coupling is ignored, as
in the method of lines.

A fully discrete least squares approach is feasible, however, if u; is discretised
in time before the least squares minimisations are carried out. Minimisation is
then over U; and X, rather than [/ j and X ; and the variational equations
include additional terms that do not arise in the semi-discrete finite element
formulations.

In what follows we shall restrict attention to first order space operators Lu
depending on z,u and Vu only.

4.1 Least Squares Finite Elements on a Fixed Grid
To describe the procedure in more detail consider a one-step (explicit or implicit)
time discretisation of equation (1) of the form
un,+1 —un
At

where * may denote n or n+ 1. The finite-dimensional approximation ynrtl
at the next time step is then generated by least squares minimisation of the
residual

= LU.* (27)

Un+1 —_yn
R = e~ LU” (28)
of (27) over the coeflicients UJTL+1 via
min (18], (29)

J



In the explicit case (* = n) the gradient of (29) with respect to Uj""'1 gives
rise to the weak form
gt
n J — 0

which is a simple time discretisation of (4).
However, in the implicit case (* = n + 1) the gradient of ( 29) with respect

to Uj”"'1 leads to
g OFTY O arunt!
<R il vall - Bl (31)
2

Equation (31) is not simply an implicit time discretisation of (4) because of the
additional terms in the test function.

4.2 Least Squares Moving Finite Elements (LSMFE)

Now consider minimisation of the Ly norm in (29) over the nodal coordinates
K;?"'l as well as the coefficients Uj""'l. This is the approach of the recent Least
Squares Moving Finite Element (LSMFE) method [14] which was proposed
partly in an attempt to overcome the difficulties which arise with first order
PDEs when the nodes move with characteristic speeds.

By analogy with (16) consider the minimisation

. *12
U!“Hu)r(lwl 121z, (32)
3 ==
where R* is the residual

n+l _ yn n+l _ yn
U U g £ KT (33)

& At At

(cf. (16)). In the explicit case (* = n) ||R"||i2 is quadratic in both sets of
variables U;‘"’l, K?'H and minimisation yields

<R", (Lo ) %> =0 39

which is a simple time discretisation of (17).
In the implicit case (* = n+1), on the other hand, the gradient of ”R""’1 ”22
with respect to an+1 gives

gt xmHoxn 9
+1 J = = +1 _ n+1 =
<Rn , ( i V4] T LU =0 (35)




while that with respect to K;-H'l gives (formally)

g7+t xrtl_x¢ 8
n+l (. n+1 J _ = = 7:L+1_ L n+1
(1o, vty (8 - K oy g

+ ]{ % (R*+1)? ¢ +15ids = 0 (36)
using (13), where the boundary integral in (36) (which appears due to variations
in the mesh) is taken over the boundaries of the elements in the patch containing
node j (see fig.1). The unit normal 72 is measured inwards.

In deriving equations (35)/(36) the functions U"*! and X"*! appearing in
the time-discretised terms in (33) are regarded as independent variables, but
the Un*! occurring in VU™*! and LU™*! are functions of 2 and X. We have
therefore used the chain rule

OLU _ 0U 9LU  OVU oLU 6LU¢. Y
au; — du; U T 8U; OvVU ~ oU 7 T avU

Vé; (37)

(see (3)) when differentiating VU"*+! and LU™*! to obtain (36).

We shall refer to (35)/(36) as the transient LSMFE equations. These equa-
tions have been solved in [14] in one dimension and, in spite of hopes to
the contrary, the method was found to still possess Property 1 of section 3,
that for scalar first order time-dependent PDEs the method is an approximate
method of characteristics. This property survives because, even though equa-
tions (35)/(36) differ from (17)/(18), approximate characteristic speeds still
make the residual vanish. However,as we shall see, the method does generate
the Optimal Property of MFE at the steady state.

4.3 Steady State Least Squares Moving Finite Elements

Consider now the steady state limit of (35)/(36) as At — oo, assuming that
convergence takes place. Since R"*! — LU, equations (35) and (36) become

<LU, %LU> - <LU, (=vU) ain (LU)> + f S(LUY gids =0 (38)

which may be written in the equivalent forms

8 (LU)? 8(LU)? B
< 30 ,¢j>+<—a§7—)v¢j>—0 (39)

o(LUY ) a(LU)? AN
<—0£——,¢,> +<((LU) - (VD). S ) ,v¢,> =0,  (40)




where we have used (37) and the identity (24) with F' = (LU)?. Equations (38)
may be obtained by direct minimisation of ||LU||?:2 over U; and X;.

Referring back to (25)/(26) we see that equations (39)/(40) are the steady
MFE equations for the PDE

8 (Lu)* 8(Lu)®
T Bu + Ve oVu

(see [13]) which corresponds to the Euler-Lagrange equation for the minimisa-

0 (41)

tion of the Least Squares functional ||Lu||iz.

To solve the nonlinear equations (39)/(40) by iteration we may use the cor-
responding time-stepping method, (35)/(36), with n as the iteration parameter,
or any other convenient iteration (see section 7).

4.4 Properties of the Steady LSMFE Equations

(i) As we have already seen in section 3.3, for steady problems the Least Squares
functional F(z,U,VU) = (LU)? leads to the weak forms (25)/(26) and therefore
(39)/(40), and we have the Optimal Property, as expected.

(i) In the LSMFE tests carried out in [14] on scalar first order steady state
equations it is shown that the nodes no longer move with characteristic speeds,
as in Property 1 of section 3.1, but instead move to regions of high curvature as
in Property 2. This is a useful property and could have been expected because
the least squares procedure in effect embeds the original first order equation
in the second order equation (41) for which the MFE steady limit yields the
asymptotic equidistribution of Property 2 of section 3.1.

(iii) In the particular case where LU takes the form of a divergence of a
continuous function of U/, we may apply an extension of the result in [15] which
shows that, asymptotically, minimisation of |LU ||i2 is equivalent to equidistri-
bution of LU over all the elements in a certain sense. Thus for example in the

case where
Lu = V.(au) (42)

with constant @, the LSMFE method asymptotically equidistributes the piece-
wise constant residual LU = V.(aU) in each element in the sense described in
section 6.1 below.

We now give some illustrative examples of steady LSMFE.

4.5 Examples

(1) Take
Lu=u-— f(x) (43)

for which the steady LSMFE weak forms, from (39)/(40), are
1
((Lop )enw-ran)=o (49

10



subject to boundary conditions, which provide a local minimum for the least
squares variable node approximation problem
g [0 s e (15)
(Superior results for this problem can however be obtained by considreing
piecewise linear discontinuous approximation - see section 4.6 below.)
(i1) Take
Ou du
Lu=aVu=a—+b_— 46
e oz By (46)

where a = (a,b) is constant. In this case equation (41) becomes the degen-
erate elliptic equation

v.(aVu)a) = (a;—x+b§y> <ag—z +b%> —0 (47)

The steady LSMFE weak forms, from (39)/(40), are
(a.VU,a.V¢;)) =0 (48)

and

Mﬂ> ! <v¢,~, (Q.VU)Z> =0, (49)

CIBLES SR

subject to boundary conditions, which provide a local minimum for the least
squares variable node approximation problem

. 2
ﬁl}t{lj/(g.VU) di (50)

(see ([16],[19])). These are also the steady MFE equations for the second order
degenerate elliptic equation

V.((a.Vu)a) = 0 (51)

If a depends on z but is continuous and divergence-free, then LU = a.VU is
the divergence of a continuous function and this example has the asymptotic
equidistribution property referred to in section 4.4, in this case asymptotically
equidistributing @ VU where @ consists of the element averages of a(z).

(iii) Take 2 Ny
pmto= () + (%)) -

for which equation (41) is Laplace’s equation

Viu =0 (53)

11



The steady LSMFE weak forms, from (39)/(40), are
a(vU)*
(Ve;,VU) = <¢j, —(M——> — <v¢j, (VU)2> =0, (54)

subject to boundary conditions, which provide a minimum for the variable node
Dirichlet problem (see e.g. [6])

Jnin / VU dz (55)

4.6 The MBF Approach

If the functional F' is independent of VU (the best approximation problem)
we may take combinations of the variations 6U; and 6X; to design simpler
sequential algorithms. The first variation of the square of the Ly norm of R =
LU, using (32),(35)/(36) and (38), gives

ll 2 oLU

syieui, = (20,88 ;) (s - vvsx)) (56)

1 =
_ ]{ 5 (LU)? 456X ;ds (57)

Setting 6X; = O gives the fixed mesh least squares equation
oLU

LU—— ¢;) = 58
(025 4;) =0 (58)

while, setting
6U; —VU.6X; =0

gives

?{ % (LU)? ¢;7ids = 0, (59)

an equation for updating the nodes locally which depends only on the integral
over the boundaries of the patch containing node j. The constraint (4.6), which
forces 6U; to vary with §X;, corresponds to linear interpolation/extrapolation
on the current piecewise linear U function. This approach, which depends only
on local problems, is called the Moving Best Fits (MBF) method in [10] and is
the basis of best approximation algorithms in [19],[16].

12



5 Finite Volume Methods

We turn now to a discussion of the use of discrete l; norms with area weighting
as a basis for generating finite volume schemes, to a large part the result of a
simple quadrature applied to the Ly norm used previously.

Define the discrete I norm as the weighted sum over triangles of the average
residual of the PDE, viz.

IRIE =S SRy (60)
T

(cf. (2), (16), (29) and (32)), where the suffix T runs over all the triangles of the
region, St is the area of triangle 7' and Ry is the average value of the residual
R over the vertices of T

This norm coincides with the Ls norm in the case where R is constant on
each triangle. For then

i, = [ Riz=3 / wa=Y R i de=35rRr =Rl (O

as in example (ii) of section 4.5 where R = LU = a.VU, the advection speed a
being constant and U piecewise linear. If the area weighting in (60) is omitted
this link is lost. However, one objection to the use of Least Squares residuals
is that when triangles become degenerate the norm of the derivative is un-
bounded. By redefining the norm in (60) with a squared weight S% instead of
St the norm is always well-defined and still has an approximate equidistribution
property (see [8]). Here we concentrate on (60), however: the modifications are
straightforward.
The form (60) may be rewritten as a sum over nodes j, namely

2 1 =2
IRIE, =322 > Sr,F, (62)
j AT}
where {7} runs over the patch of trangles abutting node j (see fig.1).
We may take (VU), to be the gradient associated with the linearly inter-
polated corner values of U in the triangle T', given by (see [13])

_SuAY, YUAX, \ | ( NAU —Y XA (63)
SYXAY,  —YVAX ) \XX:AY; YYiAX;

where the sums run over the corners i of the triangle T' and AX;, AY;, AU;
denote the increments in the values of X,Y,U taken anticlockwise across the
side of T opposite the corner concerned (see fig.1). This is of course identical

to the finite element gradient with piecewise linear approximation. In the same
notation the area of the triangle T' is

Sr = %ZXiAY,- = —% > viAX; (64)

(VU)p = (

13



which incorporates a summation by parts.

5.1 Moving Finite Volumes

By analogy with the MFE method of section 3 a moving finite volume (MFV)
method may be set up by minimising the residual

||U -vu. X -1U| (65)
(see (60)) over U; and _Xj, which leads to
S sry (0 -vu.x - LU) ~0 (66)
{73}
> sry (v -vux - LU) (=), =0 (67)
{7;}

(cf. (17),(18)) where {7} is the set of triangles abutting node j and the suffix j

indicates that terms involving {7 and X are evaluated at the node j while those
involving VU and LU are evaluated over the triangle Tj.

Property 1 of section 3 still holds since the residual vanishes as before when X
approximates characteristic speeds. The method also has the same singularities
as MFE, in particular when components of the gradients VU are the same in
adjacent elements.

At the steady state we have the steady MFV equations

> 51y (LU); =0 (68)
{75}

> S, (LU)g (=VU)p, =0 (69)
{7}

If Lu is derived from a variational principle, given by (7), these become

> s ( . g;) =0 (70)

(T}
OF
> Sy < + V. WU) (=VU), =0 (71)
{T;}
which, using the summation by parts implicit in (64), leads to
OF 1 8F
> S (-—————.@j) =0 (72)
) i U  20VU i

14



OF 1 0F
> Sy (‘W - iﬁ@j) (=VU)g; =0 (73)
{75} i

where n; = (AY;,—AX;) is the inward normal to the side opposite node j
scaled to the length of that side (see [18] and fig.1).

5.2 A Discrete Optimisation
By analogy with (60) a discrete form of (9) is

I(F) = ZSTF( U, VU )y _ZST ZF (X;,Us, (VU)p) (74)

where the overbar denotes the average value over the vertices of 7. (When Euler
first derived his variational equation he used such a finite form, although on a
fixed mesh of course.)

The sum in (74) may be rewritten as a sum over nodes j as

1(F) = 3ZZSTJ3ZF< U, (VU)r,) (75)

i AT5}

where 7 runs over the corners of the triangle T;.

A moving mesh method may be derived based on the two coupled equations
which arise when (75) is optimised over both U; and X;. Differentiating (75)
with respect to Uj gives

6F oF 0ovU
Z 5153 ( avU ' 8U ) (76)
leading to the equation
O0F 1 OF
S Sra ——ﬂ> =0 (77)
& ( 6U 20VU0 7/,

This is a finite volume weak form which corresponds to the finite element weak

form (10). It is also identical to (72) showing that the optimal property of

section 2.2 goes over to the steady state finite volume case when U; varies.
Differentiating with respect to X; gives

ol _ 1 (0F OVU OF
5%, s (ox * 7 'aVU)j 6

OF 0 -1 1 oF
> (STa—X‘ (AU( 50 )——ST VUr. n) avu) =0 (79)

15



(cf.(73)). Equation (79) is the companion weak form to (73), corresponding to
the second finite element weak form (23). However, this differs considerably
from (23) showing that the optimal property of MFE does not go over to steady
state MFV when X varies. This is because differentiation of a quadrature rule
with respect to X is not the same as quadrature of the derivative. In fact, it is
equations (77) and (79) which give the optimal property.

Ifr=1 (LU) equations (77) and (79) can be made the basis of a least
squares method (LSMFV) for steady problems associated with the PDE (41)
with u; = 0. From (77) and (79) we have

LU 1 aLU
> Sry (LU T o ) =0 (80)
{T;}
and
0 -1 U
{TZ} [STLU— <AU< L0 ) 557 VUn) LUWU] =0 (81)

6 Time-Dependent Least Squares Moving Finite
Volumes

As in section 4, a fully discrete Least Squares Finite Volume method for time-
dependent problems is obtained if u; is discretised in time before the I3 least
squares minimisations are carried out. Minimisation is over U; and X rather

than U and X
Con51der agaln the one-step time discretisation of equation (1) in the form
(27). Then on a moving mesh the solution at the next time step may be gener-
ated by the least squares minimisation of the implicit form of the residual over
U}"H and _)_(_?H via
. bl 112
or il =], (82)
1=y

where (cf. (60))

Un+1 —_yn Xn+1 _ Xn
n+l _ . n4l £= = n+1
R = Az vU —x LU (83)
(with VU™ *! defined as in (63)) and
IR, = (R, R)y,, (PQ), =) SrPrQr (84)
{75}

Setting the gradients with respect to Uj"+1 and l;-’“ to zero gives
dRn+1
+1 —
<Rn , 8an+1> =0 (85)
Iz

16



and

ORI 1 2 8SpH
R > 1Y (BP) =0 (86)
) n+l T n+1
< al] 1a ) {15} ’ 8XJ

We shall refer to (85)/(86) as the transient LSMFV method. For scalar
first order time-dependent PDEs the method is still an approximate method of
characteristics since approximate characteristic speeds always make the residual
R7*1 vanish. However, in the steady state it has other features.

6.1 Steady State Least Squares Finite Volumes
Consider now the steady limit. Then from (82) we are minimising [|LU||122 and
(85)/(86) reduce to
a (L)
R il B G
<L(. 3T >I 0 (87)
and

aLUu 2 05,
<L"‘6,\ > QZ (LU ),fj 0X, (88)

which are identical to (80) and (81) (see [17],[18]).
[t has been shown in [15] that if L7 is the divergence of a continuous function,
then the optimal values of LU are equidistributed in the sense that the double

sum over elements o -,
3D (8eLU, — SeLU o) (89)
r‘ e!

is minimised. Thus if Lu = a.Vu with constant a, as in example (ii) of section
1.5 the piecewise constant LU = a.VU is equidistributed over the elements in
this sense. The same result is only asymptotically true for the LSMFE method
(see section 4.4).

6.2 Example
Consider again example (ii) of section 4.5, for which the steady state residual is
LU =a.VU (90)
Then (85) and (86) reduce to

— 0(VU) —= 0(a.VU) 1 — 2 05T,
L ,— L e — ) = Gl _=
< U,a 5T, >12 < U, o%, |, + 2;(LUT) ox, =" (91)
subject to boundary conditions, where from (63)
9(a.VU)y, b\ 1.
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Recall that n; is the inward normal to the side of the triangle opposite j scaled
by the length of that side and AUj is the increment in U across that side, taken
anticlockwise.

Equation (91) may be written

Z (@.VU)p, (an;) =0 (93)

and

N [(Q.VU)T AU ( ;b ) b (a.VU) @] =0 (94)

J

We observe that (93) is identical to (48)), noting that VU is constant and V¢ =
S7'n. However, (94) does not correspond to (49), even when a is constant, so
the two methods are not identical under node movement.

7 Minimisation Techniques

The fully discrete least squares methods of sections 4 and 6, unlike the unsteady
Galerkin methods of sections 2 and 3, provide a functional to reduce and mon-
itor. It is therefore possible to take an optimisation approach to the generation
of a local minimum. Note that the time stepping methods discussed earlier do
not necessarily reduce the functional.

Descent methods are based upon the property that the first variation of a
functional F,

e = T
OF = Y g Y (95)
say, 1s negative when
Y = —1g = _Tg—; (96)

where 7 is a sufficiently small positive relaxation parameter. For the present
application the gradients g have already been evaluated in earlier sections. For
example, in the LSMFE method the gradients g with respect to U; and X
appear on the left hand side of (35)/(36). Thus, writing Y= {Y,} = {U;, X, }
and g = {gj} the steepest descent method applied to (32) with x =n + 1 is

1\k+1 1\k k k
@)™ = @) = - () (97)
(k = 1,2,...) where 7']»’c is the relaxation parameter. Choice of Tjk is normally
governed by a line search or a local quadratic model.
The left hand side of (97) may be preconditioned by any positive definite
matrix. The Hessian gives the full Newton method but may be approximated
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in various ways. In [14] a positive definite regularising matrix is used in place
of the Hessian to generate the solution.

In the present application a local approach may be followed which consists
of updating the unknowns one node at a time, using only local information.
For a given j each step of the form (97) reduces the functional (32), even when
the other Y"1 values are kept constant. The updates may be carried out in a
block (Jacobi iteration) or sequentially (Gauss-Seidel). A variation on the local
approach is to update U; and X; sequentially, which gives greater control of the
mesh. Descent methods of this type have been used by Tourigny and Baines
[16] and Tourigny and Hulsemann [6] in the L case and by Roe [17] and Baines
and Leary [18] in the I, case.

8 Conclusions
We conclude with a summary of the main results.

e The MFE method is a Galerkin method extended to include node move-
ment. Its main properties are

(a) numerical imitation of the method of characteristics for first order
equations in any number of dimensions

(b) repulsion of nodes from inflection points for second order equations in
one dimension

(c) for
OF oF
LU——B—U VWE—-O (98)
the steady MFE equations provide a local optimum for the variational
problem
J?EJ/F(L U,VU)dz (99)

in a piecewise linear approximation space with moving nodes.

e The implicit semi-discrete in time Least Squares method (LSMFE) is a
least squares method extended to include node movement. It differs from
MFE through more complicated test functions and the extra term found
in (36), although in the case of first order equations it shares with MFE
the property of being a numerical method of characteristics. However, in
the steady state the LSMFE equations for Lu = 0 are equivalent to the
steady MFE weak forms for the PDE

0wy g (——6 (L”)Z) =0 (100)

ou OVu
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and therefore provide a local minimum for the variational problem

min /(LU)zdg (101)

MEEAS

Moreover, it can be shown that, if LU is the divergence of a continuous
flux function then the flux across element boundaries is asymptotically
equidistributed over the elements.

e The LSMFV method is a moving mesh method based on minimisation of a
weighted 5 norm of the residual of the semi-discrete in time PDE over the
solution and the mesh. It shares with LSMFE the property of generating
approximate characteristic speeds. At steady state, however, it lacks the
Optimal Property of LSMFE but it has the more precise property that,
if LU is the divergence of a continuous flux function, then the flux across
element boundaries is equidistributed discretely (not just asymptotically)
over the elements in the sense of (89) [15].

e Solutions may be obtained by the minimisation procedures of optimisation
theory applied to the appropriate norm. A local approach to optimisation
is advantageous in preserving the integrity of the mesh.

The MFE, LSMFE and LSMFV methods have been shown to be effective
in generating approximate solutions to scalar differential problems in multi-
dimensions which exhibit shocks and contact discontinuities ([10]-[13]), ({17]-
[20]). The MFE and LSMFV methods have also been effective in obtaining
approximate solutions of systems of equations ([10]-[12], [18],[20]).

Finite Volume methods of the type discussed here do not give highly accurate
solutions on coarse meshes. However high accuracy is not crucial as far as the
mesh is concerned. Thus it may be argued that an LSMFV method is sufficiently
accurate for the mesh locations but a more sophisticated method which is robust
on distorted meshes, such as high order finite elements or multidimensional
upwinding ([21],[22]), may be required for the solution on the optimal mesh.

An outstanding problem is how to avoid the generation of characteristic
speeds by the MFE and MFV methods for first order equations. In the case of
MPE a clue may be found in the LSMFE method, which embeds the original first
order equation in a second order degenerate elliptic equation prior to moving
the nodes. When solved by a relaxation method in an iterative manner, in
effect applying a finite difference scheme to the associated parabolic equation,
the resulting nodal speeds are not characteristic but instead move nodes from
low curvature regions to high curvature regions, as required. Moreover the
nodes tend to align themselves with characteristic curves, although they do not
actually move along them. Although the resulting nodal speeds are effective in
this sense, the LSMFE does not generate the correct solution to the first order
equation since it has now been embedded a second order equation. Thus, if
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these speeds are to be used it is impossible for the discrete equations to be set
up from a unified approach. Instead it is necessary to generate the speeds from
the LSMFE method which must then be substituted into the Lagrangian form
of the first order equation, to be solved separately using any convenient method.
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