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Abstract

This paper extends the class of integral equations whose solutions can be generated from
a finite number of particular cases to include those of Sturm—Liouville type, including
the case where the associated operators are not self—adjoint. An explicit expression for
the resolvent operator is generated from two particular solutions, in a form amenable to
the use of approximation techniques. A usable estimate of the norm of the inverse

operator is obtained even in cases where approximate solutions have to be used.



1. Introduction

This paper is concerned with the integral operator K on L,(0,1) defined

(KP)(x) = [ xy(min(x,t))X(max(x,t))g(t)dt (L.1)

0
and with other operators closely related to K. We assume that x, and x, are given
members of L,(0,1); the bar denotes complex conjugation.

Interest in K, and the description we have assigned to it and its near relatives,
stems from its connection with the Sturm—Liouville boundary value problem for second

order ordinary differential equations. For suppose that ¢ is a twice differentiable

function on (0,1) satisfying

(P¢’) —qp+ Mg = h (1.2)
in (0,1), together with
a,0’(0) + bed(0) = ¢,, a;9’(1) +bP(1) = c,. (1.3)

Then under certain conditions it can be shown (see, for example, Porter and Stirling (3))

that ¢ also satisfies the integral equation

#x) = 1(x) + A [ x(min(xt)) R(max(x,t)e(t)g(t)dt (0 <x < 1), (1.4)

in which the functions f, x, and x, can be determined.

The equation (1.4) can be investigated via the equation

¢ = £+ AKR¢ (1.5)



in L,(0,1), R being the operator defined by

Ré = 16 ($eLy0,1)). (L6)

Spectral and approximation methods applied to (1.5) provide information about the
solution of (1.4) and therefore about the solution of the boundary value problem.

It is common in differential equation theory to assume that the given functions
p,q, r and h are real—valued, that the parameter A € R and that a;, b; and c; are
real numbers for i = 0,1. These conditions imply that f, x, and yx, are real—valued
and that the operators K and R are self—adjoint.

In principle, the Sturm—Liouville problem consisting of (1.2) and (1.3) can, of
course, be solved in terms of two linearly independent solutions of the homogeneous
version of (1.2), using standard differential equation theory. In practice, this procedure
is often not available and approximation techniques are required. = Nevertheless, the
question naturally arises whether (1.4) admits a construction similar to the boundary
value problem, in the sense that its solution is determined by just two functions, defined
in a particular way. Such properties have recently been identified for other integral
operators by Porter and Stirling (4), who described the solutions of the associated
operator equations as being finitely—generated.

Although we have used the Sturm—Liouville problem to motivate the operator K
and to suggest that the solutions of (1.5) could be finitely—generated, our results are
obtained without reference to differential equations. We assume only that x,, x,, and
f are members of L,(0,1), and that re Lm(O, 1); these functions are not necessarily
real-valued. In consequence K need not be self-adjoint. However, its kernel is what
is sometimes described as "complex symmetric"; that is, it satisfies k(x,t) = k(t,x), but

is not necessarily real—valued. To identify the corresponding property of K we need to



use the conjugate—linear operator J, where

Ip = ¢ (¢ € Ly(0,1)) . (1.7)
Then we see that the adjoint, K*, of K is given by

K* = JKJ (1.8)
and also that
R* = JRJ. (1.9)

The class of operators considered by Porter and Stirling (4) includes those
generated by difference kernels, which have received attention from previous authors;
references may be found in Porter (2), which the later work generalises. The operator
K defined by (1.1) is not included in previous work, although there is an isolated
connection because the difference kernel exp(a|x—t|) (a€C) is also of the form
x(min(x,t))¥,(max(x,t)) with x,(x) = exp(—ax) and x,(x) = exp(a x).

The operator defined by

(K$)x) = —4 [ sgn(e-t){uxlt) - (OB} (Fel,0,1))  (110)
0
is a rank—two perturbation of K, since
K¢ = Kop—4(¢ X)X —4 (4 xo)x; - (1.11)

A particular example of the kernel generating K is —4sin(a|x—t|) (a€C), butin
general K is not included in existing work and we consider it here. The equation
p=1+ AKR(}S is also related to a Sturm—Liouville problem with mixed boundary

conditions.



A further operator closely related to K, which will prove useful later, is the

Volterra operator V defined by

(VO = [ Dxalt) - xT()}()dt (4 € Ly0,1), (1.12)

0
for

K¢ = —Vo+ (¢, x)x; = —IVIP+ (¢, X)X, - (1.13)

The integral equation (1.4) is typical of many which arise in applications in that,
unless it is a constant, the function r destroys the complex symmetry of the kernel.
This is often a major stumbling block in practical terms. If r is real-valued and non-
negative in [0,1], we can recast (1.5) as ¥ = Qf + A\QKQ¢, where ¥ = Q¢ = yt,
which restores the symmetry in the sense that (QKQ)* = J(QKQ)J. This device, if it
is available, allows theoretical progress to be made but can complicate calculations.
Here we require no restriction on r and, indeed, we can accommodate a further

generalisation in this direction by extending our theory to the equation

¢ = {+ ASKR¢ (1.14)
in L,(0,1), where
S¢ = s¢ (1.15)
and seL (0,1).
The present contribution therefore extends the class of operators for which the
solution of the associated second—kind equation is known to be finitely—generated.
Even in the special cases where K and K are generated by difference kernels, we

expand existing theory by virtue of including the operators R and S.



In Section 2 we establish the main results, showing how the inverse of I — ASKR
can be determined by the solutions of two particular versions of (1.14) or by the
solutions of two Volterra equations. The theory allows approximations to
(I— ASKR)™? to be constructed, which give explicit bounds for the norm of that
operator, as we demonstrate in Section 3. The main points in the corresponding theory

of the operator I — ASKR are sketched in Section 4.

2. The Inverse of I — ASKR
It turns out to be simpler to invert the operator I — AKR and deduce the
inverse of I — ASKR from this, so we shall proceed in this way.

As before we presume K is defined by

(KA) = [ xi(min(xt)xs(max(x)g(t)dt (0 € x< 1)

0

where x, and Y, are given members of L,(0,1) and K is a compact operator from
L,(0,1) toitself. Let r be a given functionin L _(0,1), and define (R¢)(x) = r(x)4(x).

We make no further restrictions on x, and x, but notice in passing that there
is a degenerate case where x; and ¥, are linearly dependent. Suppose X, = X, SO
that K is the operator defined by K¢ = (¢, px,)x; which has rank at most 1. It is
then trivial to check that I — AKR is invertible provided that A # 1/(rx,, #Xx,). In the
exceptional case A =1/(rx, px,) X, is an eigenvector of KR and the equation
(I— MKR)¢ = x; has no solution, so in this degenerate case I— AKR is invertible

exactly when (I — AKR)@, = x,, and hence also (I— AKR)¢, = ¥,, are soluble.



Returning to the general case suppose that there are vectors ¢,, ¢, € Ly(0,1)

satisfying

(I-AKR)¢; = x;, (I —AKR)§, = X, (2.1)

Then define the linear operators L, and W by

(Ld)(x) = [ ,(min(x,t))@max(x,t))(t)dt (22)
0
(WO = [ ($,0)3:(1) — 6,(1)Py(x))p(8)dt , (2:3)
0
and let
C = 1+ XMrdy xs) = 14 Mrxy, ¢) - (2.4)

The equality of the two versions of C follows from the observation, using (1.8) and

(1.9), that (I—XK*R*)¢, = x, whence

(1dy x2) = (Roy(I- XK*R*)%) = ((I-ARK)R¢,, ¢,)
= (Rxp $9) = (txp o) -

From the definition of K, ¢, and ¢, we have

¢1 = Xt )\KR¢1, ‘_ﬁz = 9_62 + )‘KR‘}z )

whence, for almost all x in (0,1),



A(x) X1(x) _ I¢1(X)] ’
X3(%) By(x)
where A(x) is the matrix
1+ )\jxl)‘cz(t)r(t)qﬁl(t)dt AL X (8)n(t) (1) dt
Ax) =
M X (8)x(£)By(t) dt L+ AL (Dr(6)B(t)dt

Now the determinant of A is an absolutely continuous function of x and its derivative
is equal almost everywhere to zero, and hence det A(x) is constant. [See, for example,
Stromberg (5), Theorems 6.84 and 6.85.] The constant is 1+ A(r¢,, x,), thatis, C.

Therefore, setting

L+ AL (0 (),(8)dt I AOEOLIGLT
B(x) =
= M Ta(Or()B(t)dt Y ZOHOI O
we have A(x)B(x) = B(x)A(x) = CI, giving

CX1 = ¢+ /\WRX17 CXz & ¢2 + XW*R*Xz ) (2'5)

the second equation arising from the conjugate of the second component in the equation

B(¢,, &2),1‘ = C(xy, 9_62)T-

From (2.2) and (2.3), we have for all ¢,

Lyp = —Wo + (¢, 8,))¢, (2.6)



whence Ly ¢ = —W 6+ (4, ¢)¢,.

Therefore, from (2.5) we have

the second equation arising through the equation Cyx, = C¢, — AL; R*x,.
The equations (2.7) are in a sense reciprocal to (2.1). We shall, however, find it

more convenient to work with (2.5), and the use of V, as defined in (1.12), along with

(1.13) yields from (2.1),
¢, = Cx;—AVR@,, @, = Xy+ Mty Xo)Xi— AVRA, . (2.8)
Also, the second equation in (2.5) yields (on expressing W* in terms of W)
Cxy = Cy—AMrdy, xp)¢; + AWRX, . (2.9)

This rather lengthy set of preliminaries allows us to prove:

Lemma 1l With the notation above
AVRWR = AWRVR = CVR-WR.

Proof: From the definitions of V and W we have, for all ¢ € L,(0,1),

(AWVRWR)G(x) = [ a(xt)r(t)¢(t)dt
0
where
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afx,t) = Af L) — Xi(5) X B(8)Bs(t) — (1) By(s)}ds

= M 0u006) = (8T B(5)Bo(8) — B,(8)B(s)}ds
0
£ 0L {8(0)Buls) — 6,(6) B} i(0)Tals) — x,(5) X))}
= B(AVRS)(x) - 4, () AVRE)(x)
+ X OWRR,)(E) — TR AWRx)(1)

= Clxy(0)X(t) = x1(1)X3(%)) + (#5(8) Po(x) — D4(x)Po(t)) -

Therefore AVRWR = CVR — WR, and a similar calculation shows that
AWRVR = A\VRWR. o

At this stage we need to take stock of the situation. We assumed in (2.1) that
x; and x, were such that ¢, and ¢, exist satisfying (I—AKR)¢, = x;,
(I—-AKR)@, = X,, but we have so far made no further assumptions about x, and x,

or about I — AKR.

Theorem 2 Suppose that ), and x, belong to L,(0,1), that rELw(O,l), that the
operators K and R on L,(0,1) are defined by

(K@) = [ x(min(xt))Fy(max(xi)g(t)ds  (0<x<1)

0

(Re)(x) = r(x)¢(x) (0<¢x<1),

and that A € C.

Then if there are functions ¢, ¢, € L,(0,1) satisfying
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(I-)KR)¢, = x;,, (I—-XKR)}, = ¥,
it follows that I — AKR is invertible. Its inverse is given by
(I—-)KR)" = I+ ALR,

where L = ElLo and (Ly¢)(x) = j01¢1(min(x,t))$z(ma,x(x,t))¢(t)dt, C being the
number

C =14+ Mty X9) s

which is necessarily non—zero.

Proof: Assuming for the present that C # 0, then in the earlier notation we have from

Lemma 1,
(I+ AVR)(I- El AWR) = (I _61 AWR)(I + AVR)
=1.

Now, using (2.6) and (1.13), for all ¢ € L,(0,1),

AKRL,R¢ = — AVRL,R¢ + A(RL,R4, x,)X;
= — AVR(— WR¢ + (R¢, ¢,)¢;) + (— ARWR¢ + A(R&, $5)Ry, x,)x;

= (CVR—-WR)¢ + (19, ¢,)(— AVR$,)
+ (R, — AW'R*xp)x;, + Mro, ¢5)(xdy, Xa)x4

= —CKR¢ + LjR¢ + C(r¢, xo)x; — (14, )¢,
+ (14, 99)(d,— Cxy) + (4, ¢, — CXz)X1
+ Axd, $9)(rdy, X2)X4

= — CKR§ + LR + (14, ¢,)(1 + A(réy, x5) — C)xy

= —CKR¢ + L,R¢,

using (2.5) and (2.8). Similarly AL,RKR¢ = — CKR¢ + L R¢.
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Therefore for all ¢ € Ly(0,1),
x
(I—XKR)(I + s L,R)¢ = (I+3LRG)(I—AKR)$ = ¢,

assuming C #£ 0.
Now suppose C =0. Then by Lemmal AVRWR =-WR, whence
(I+ AVR)WR =0. However, VR arises from a Volterra operator so that I+ AVR

is invertible, showing that WR = 0. Since WR is given by

(WR¢)(x) = [ “($10B(t) = B(£)P,()r(t) B(t)dt

0

it follows that ¢,(x)@,(t)r(t) = @,(t)Py(x)r(t) for almost al x and t with
0<t<x<1. Thisin turn shows that R¢, and R(}z are linearly dependent and L, R
and KR are of rank at most 1. Moreover by (2.5) (since C=0 and WR = 0)
¢, = ¢, =0 whence x, = x, =0, contradicting the equation C =0. Thus C # 0.
(To put this in a clearer context, if one pursues the degeneracy that follows from
the assumption C =0, KR has rank at most 1 and the condition that C =0 shows
that A is exactly the value making I—AKR singular whence (I — AKR)¢, = x,
cannot have a solution. In effect, what prohibits C being zero is the existence of the

two particular solutions ¢; and ¢, in (2.1).) O

The modification of this result to deal with operators of the form SKR, where
(S¢)(x) =s(x)p(x) (0<x<1) and s¢ L (0,1) is now simple. The key tool is the
relation of I — ASKR to I— AKRS; since for any two bounded linear maps A and B
the non—zero members of the spectra of AB and BA are identical, I— ASKR is

invertible if and only if I — AKRS is invertible.
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Theorem 3 Suppose that x, and ¥, belong to L,(0,1), that r and s belong to
L (0,1), that K, R and S are defined by

KH)x) = [ x(min(t)v(max(xt)gB)dt  (0¢x<1),
(RO)(x) = 1(x)(x), (S¢)(x) = s(x)g(x) (0<x<1)
and that A € ¢. Then if there are functions ¢; and ¢, in L,(0,1) satisfying

(I1-AKRS)¢, = x, (I—AKRS)¢, = Xy,

I — ASKR is invertible and its inverse is I + ASLR where

LA)x) = & [ 6, (min(x,1))p,(max(x,t)) #()dt

0

and C =1+ A(1s¢;, x,); C is known to be non—zero.

Alternatively, if there are functions ¢, and ¢, satisfying
(I—-ASKR)¢, = Sxq, (I-ASKR)¢, = SX, (2.10)
then I— ASKR is invertible and its inverse is I + ASLR where L is as above, with

¢y = Pyfs, Gy = Vs (where these are defined) or ¢, = x; + AKRy,,
¢, = X, + AKR¢, (in general).
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Proof: Suppose that (I—AKRS)¢,=x,, (I—AKRS)¢,=1%,  Then Theorem 1
applies and we see that I — AKRS is invertible, its inverse being I 4+ ALRS. From this
it follows that AKRS and ALRS commute and that ALRS = AKRS + A?KRSLRS =
AKRS + A’LRSKRS, whence also  ASLRS = ASKRS + A2SKRSLRS = ASKRS +
A2SLRSKRS.

If S is invertible (or if it has dense image) it follows immediately that
ASLR = ASKR + A?SKRSLR = ASKR + A?SLRSKR,  which in turn shows that
(I— ASKR) " = I + ASLR.

In the general case, we can choose a sequence s, of functions in Lm(O,l) such

that the essential infimum of |s,| is positive and such that ess sup|s, —s| — 0 as

l
n — w. If the corresponding multiplication operator is S, then S, is invertible and
IS,—S|| — 0 as n—wo. Because I —AKRS is invertible, sois I —AKRS, for large
n, and so there are functions ¢{™ and ¢{™ in L,0,1) which satisfy
(I—AKRS,)¢'{™ = x,, (I—AKRS,)@s™ =X, Then if we construct L; from ¢{™
and ¢{™, as before, I+ AS L R is the inverse of I—AS KR. Now, because
(I—XKRS)?— (I-AKRS)! as n—w, it follows that |[¢{™ —¢||—0 and
|44™) —@| =0 as n—w; hence |L,—L|—0 as n—w, showing that
(I—ASKR)' =1+ ASLR in this case also.

For the alternative version, suppose that ¥, and /N satisfy
(I— ASKR)9, = Sx;, (I—ASKR)%, =S¥, From these equations it follows that ¢,
and ¢, are in the image of S.  Moreover, if we set ¢, = x, + AKRy; and
¢, = X, + AKR9, it is easily checked that (I- AKRS)¢, = x; and
(I— AKRS)@, = ¥, reducing the situation to that of the first case. Finally, we notice
that

Sx, = S(I—-)KRS)¢, = (I— ASKR)S4,,
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which by the invertibility of I — ASKR shows that ¢, = S¢,, and similarly ¢, = S4,,

whence the expression for ¢; in terms of ¢; (i =1,2). !

The second version of Theorem 3 gives us the result closest to Theorem 2, namely
that the equation (I— ASKR)¢ =1{ has a solution for all f and (I—ASKR) is
invertible if (and, trivially, only if) the equation is soluble in two particular cases,
f=Sx, and f=S%, The existence of solutions of (I —ASKR)¢ ={ in the cases
f=yx, and f= ¥, is not sufficient to show the invertibility where s is not a constant.

(This may be seen by considering the case where x, = X[O 1 Xy = x[% 1] and A =4

-1 (%—<x<%)7

where X, denotes the function which takes the value 1 on the set A and zero

elsewhere.)

The inverse of the operator (I — ASKR) is therefore known once we can solve
two particular cases.  This is rather similar to the situation with other classes of
integral operators (see Porter (2) and Porter and Stirling (4)), where the resolvent
operator was also generated by solving finitely many particular cases. Moreover, as in
the work cited, we have more than one route for finding the resolvent. For simplicity
we shall take S =1 here; the general case can be deduced from this by the methods of
Theorem 3.

We notice first that equation (2.8) shows us that ¢, + AVR¢, = Cx,, so that
¢, is a multiple of (I + )\VR)_lxl. Since VR is a Volterra operator it is automatic
that I+ AVR has an inverse and this inverse (I + )\VR)_1 is given by the sum of its
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Neumann series EOI;’=0(/\VR)n. In some cases it may prove practicable to obtain a close
approximation to ¢, by truncating the series after a few terms.  Alternatively, in
certain special cases, it may be convenient to convert the Volterra integral equation into
a differential equation and thus find ¢,. @, can also be obtained from (2.8) by solving
the corresponding equation or by observing that (I — AV*R*)¢, = Cy,.

Suppose now that we choose an arbitrary g, € Ly(0,1) and @, satisfying

(I- AKR)#, = g,. Then by (1.13) we have

0,—g, = — AVRg, + A(18;, X2)x; + AKR(0, g
whence

(I—-AKR)(; —g,) = —AVRg, + A(1g;, xo)I — AKR)¢,,

from the definition of ¢,. Therefore, if (I — AKR) is invertible,

0,—g; = — AV + AMrgy X9)9,

where (I —AKR)¥, = VRg, Therefore, provided A(rg, x,) # 0 we can determine ¢,

from

Mrgy, X2)0y = 0;— 8+ AY,.

To find ¢, in this case involves solving the two equations (I —AKR)f, =g, and
(I - AKR)¥, = VRg, if g, is prescribed. If, on the other hand, we prescribe 6; and
calculate g, then only the one equation needs to be solved.  This may prove
advantageous if a suitable choice of g, (or 0,) yields a free term which renders the
integral equation more convenient to solve than (I—AKR)¢, = x; A similar

technique yields an equation for ¢, in the form X(g,, rx,)¢, = 62+ A ¥ —ga where
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(I-AKR)#, =g, and (I—AKR)¥,= m; by choosing g; = g; (hence 8, = 6))
this process requires only one additional integral equation to be solved to find ¢s.
Provided that g, and g, are chosen so that A(rg, x,) and A(g, rx,) are non—zero,
then the existence of 4, 6,, ¥, and ¥, guarantees that ¢, and ¢, exist and, in turn,
that I— AKR is invertible. It is possible, even if I — AKR is invertible, to choose
"unsuitable" g, and g, violating these requirements.

A further point emerges from (2.8), where we saw that (provided ¢; and ¢
exist) (I+ AVR)¢, = Cx, and (I+ AVR)¢, =X, + A1y, X5)X;- Since we know
that I+ AVR is invertible, let us define

. _ -1
& = (I+AVR)'x,, &, = (I+AVR) %,.

Then (I-AKR)®, = (I+ AVR)®, - A(1®, xy)x; = (1—A(r®,, x,))x;  whence
6= (L—\1®, x,)) ®, provided that 1—A(rd, x;)#0, in which case
C=(1-Xr®, x2))_1. That is, ¢, does not exist if 1~ A(r®,, x,) =0 or, more
graphically but less precisely, if C = 0. Similarly, if ¢, exists it can be determined

analogously.

3. Approximation of the Inverse of I — ASKR
In the notation of the preceding sections, we can construct the inverse,
I + ASLR, of I — ASKR once we have found the solutions ¢, and ¢, arising from the

two equations
(I-2KRS)$, = x;, (I—AKRS)$, = ¥, (3.1)

In many situations of interest these equations will not readily admit an exact solution,
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so we are forced to find some approximate solution. Suppose that, by some
approximation technique, we have found 3)1 and 352 which approximate ¢, and ¢,
respectively. ~ We can then calculate the corresponding functions %, and ¥,

approximations to x, and x, respectively, by

(I_)‘KRS)‘% = X (I- )‘KRS)% = Xz (3.2)

The fact that |x,— %, is small does not of itself tell us that ||¢,— @,|| is small;
indeed, if we have not solved (3.1) exactly we do not yet know that I—AKRS is
invertible.

Let L be the operator formed by using ¢, and ¢, in place of ¢, and ¢,

that is,

(L)) = L [ 3, (min(xt))(max(x,)Pt)dt  (0<x<1),
0

Q=

where C, =1+ A(ts¢,, x,), C,=1+ A(tsx, ¢;) and C=(C,+C,)/2. (In this
case C, and C, need not be equal.) Then ASLR — ASKR — A2SLRSKR will not be
the zero operator since ¢, and ¢, have not been found exactly. However, its kernel

can be computed directly so that, if we denote the corresponding operator by A,
(I—XSKR)(I+ ASLR) = I+ A. (3.3)

Provided the kernel generating A is small enough, we will have ||A| <1, that I+ A
is invertible and ||(I + A)-1|| <(1- ||A||)l Moreover, equation (3.3) shows that
I - ASKR is surjective if I+ A is invertible, so that equations (2.9) do possess

solutions ¢; and ¢, as required, showing that I — ASKR is indeed invertible. Then
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I

= -1
IT+ ASLR[|II(T + A)

I+ ASLR
ﬂl_iﬂfﬂ'_“ ) (3.4)

giving an explicit bound for the norm of the inverse involving quantities which can be

-1
|(T— ASKR) |

IA

directly calculated. In practical terms, this means that equations (3.1) have to be
solved approximately so that the resulting approximate solutions (751 and 552 yield an
operator A of small norm, necessarily less than 1 for this estimate to be valid. Using
(3.3) we deduce that if @ = f 4+ MSLRf, the approximate solution obtained by using ¢,

and @, inlieu of ¢, and ¢,, then

y I+ ASLR||||Af
13- gl < I ASIRIIAL (35)

It is possible to obtain an estimate of ||A|l in terms of the quantities calculated. Let

k(x,t) be the kernel defining TRSK (so that (LRSK¢)(x) =/ :k(x,t)qb(t)dt). Then

Ck(xt) = [ x,(min(x;u))Xy(max(x,u))r(u)s(u) ,(min(u,t)) 3, (max(u,t))du

0

giving

T(X)C(ERSx,)(t) + (KRSG)(x)8,(t) — (15X, $0)Xa(x)B(1) (¢ <)
Ck(x,t) =

X (X)CERST) (1) + (KRSP)(x) $alt) — (1501, x0)x,(X)Bo(t) (¢ > x)

If we then set {i)l = (I + ALRS)yx, and 352 = (I + ALRS)¥, and use the notations
ox; = X; — Xi» 6p; = ¢ — ¢; (i=1,2), then we see that the kernel of the operator
ASLR — ASKR — A2SKRSLR (thatis, A) is, as a function of x and t,
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2 5(3) (B ~ CERNOE) + (€= OBWIO] (1<)
and

2 5(x) {060 () ~ O(8B)() + (G = OB (4> )
whence

ALIRILSIL {2 - 11 5 S
I« PEEL o + naaa + €110l + 1S5
+ 1= 8y l13allxl + 1€ = Cal13lxall}

The upper bound for ||A|| just given is likely to be pessimistic (i.e. larger than the true
value). However, as long as this upper bound is less than 1 the inequality (3.5) is
available and this can be used to find the norm of the difference between the exact
solution operator and the approximate solution operator. Since this involves ||A| it,
too, is likely to be pessimistic. Another approach is to mnotice that

¢, — ¢, = (I + ALRS)(¥%, — x,) = (I— AKRS)"16x,. From this and (3.4) we see that
y I+ ALRS
18—l < gm g o

where A, = ALRS — AKRS — AKRSLRS, and the analogous result for ||, — ¢,|| is

proved in the same way. This provides a direct estimate of ||L — L||.

4.  The Inverse of I— ASKR
The method we have used in the preceding sections extends to a slightly
wider class of operators, so that we can solve equations of the form (I — ASKR)¢ = {

where S and R are as before and K is of the form
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K¢ = — Vo + (d)x, + 8(d)x, (4.1)

for given linear functionals f,g on L,(0,1); V here is, as before, given by
Vo(x) = jox( x(X)Xs(t) — x,(t)x5(x))$(t)dt. This includes the operator defined in (1.10).
The significance of this apparently minor extension is that it includes some cases of
practical importance. For example, Chamberlain (1) reduces a wave scattering problem

to one of solving the integral equation

#(x) = A [ 'sin(ky[x—t r(t)p(t)dt = f(x) (0<x<1),
0

-

where k, ¢ R. This equation is an example of ¢ =1+ AKR¢ in which the operator K

arises Wlth X1(x) = 2 cos kox) X2(x) = SiIl kox’ f(¢) = '%(451 X2)a g(¢) = —'%(¢, X1)
As in the earlier work, we shall consider the simpler situation in which S =1
first. Suppose, then, that K is defined by (4.1) and that the two equations

(I-XKR)p, = x;, (I-XKR)§, = X, (4.2)

have solutions ¢,, ¢, € L,(0,1). Then
¢4(x) 1- )‘fx)_62r¢1 + M(z¢,) )‘fo1r¢1 + Ag(ré))| | x4(x)
= 0 0
Pa(x) R B+ M) 1+ 2 [ x2d, + 8(1,)| | Xalx)
0 0

where, as before, the determinant of the matrix is constant, its value being

C= (14 M(ro))(1 + /\g(f%)) — \(19,)g(r¢,)-
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Then it follows that

Cx,— AWRyx; = ¢+ \g(rd,)¢, — Ag(r¢))9,
(4.3)

Cx,— AWRY, = 8, — M (18,)¢, + M (14))8,
where
(WO = [ (#x0)3) - $(1)B,)d®)dt  (0¢x<1).

0

From this we deduce (in the same spirit as before) that
AVRWR = A\WRVR = CVR-WR.

This equation shows us that if C =0, then WR =0, which (by (4.3)) shows that ¢,
and @, are linearly dependent, whence so are x, and X, In this trivial case we soon
see that a contradiction arises if C =0 as long as (4.2) holds.

In the general case, then, where (4.2) has solutions and C # 0, we set

ig = —%Wqﬁ + f((I—%RW)¢)¢1+ g((I—%RW)ds)&z

so that I is related to W in a similar way to that in which K is related to V. Then

some straightforward but tedious calculations show that
1+ AR = I-KR)".

The principal structural point here is that, provided the two special cases in (4.2) can be
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solved, I — AKR is invertible and the solution of (I — AKR)¢ = f is given in terms of
the solution of (4.2).
The case of (I-— )\SIA{R)-1 can be deduced from that of I— AKR in the same

way as in §2, the equations to be solved in this case being
(I—)SKR)y, = Sy, , (I—ASKR)}, = S¥,.
Approximations to L and associated error bounds follow as in the case of L.

5. Conclusions

This paper extends the class of integral equations whose solutions are
known to be finitely generated to include equations of Sturm—Liouville type. Until
recently, investigations of the sort of structural results we have established here were
confined to operators with difference kernels. Porter and Stirling (4) have shown that
such operators are particular examples of a wider class.  The present contribution
provides a further generalisation in a different direction.

It has been shown that the solution of ¢ =f+ ASKR¢ (where K,R and S
are defined in (1.1), (1.6) and (1.15) respectively) is determined for all admissible f by
the solutions corresponding to two particular cases of f. A similar result applies to the
related situation where K (as in (1.10)) replaces K.

The most immediate practical application of the theory developed arises because
the class of equations considered includes all those equivalent to the general
Sturm—Liouville boundary—value problem given by (1.2) and (1.3). Where
approximation methods have to be used to solve the Sturm—Liouville problem, the
present approach not only provides a method of approximating the solution, but one
with an explicit error bound available, without imposing undue restrictions on the

quantities involved. Existing approximation techniques rely, for example, on the
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assumption that K is self—adjoint, that r be of constant sign or that I —AKR be a
positive operator. We have not required such assumptions.

This work was partly motivated by Chamberlain’s (1) investigation into surface
water wave scattering by uneven beds. In that paper Chamberlain used existing
Hilbert space techniques to approximate the scattered wave amplitude and encountered
the difficulty that good error estimates were available only under certain restricting
assumptions. Even in the case where the function r was of one sign, allowing the
problem to be re—cast into a form using a self—adjoint operator, an explicit error bound
was not available.  Roughly speaking, the awkwardness arose from the lack of an
effective bound on ||(I— AK)™Y|| if I—AK was invertible but possessed both positive
and negative eigenvalues. We have found such a bound, and moreover in our case the
operators involved need not be self-adjoint. The techniques above can be used to
extend the cases in which Chamberlain’s results can be applied and will be of practical

value in other problem areas.
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