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Abstract
It is shown that a recent generalisation of the Cole-Hopf
transformation has a physical interpretation in terms of the "mass"
in the tail of a distribution. Solution procedures involving
characteristics are discussed and are related to moving grid

methods.



§1 Introduction

It is well-known [1] that the Cole-Hopf transformation
u--22 logw (1.1)
gx
carries Burgers' equation
u +uu = eu (e > 0) (1.2)
into the linear heat equation
W, = €ew (1.3)

Conversely, the linear heat equation may be carried into

Burgers’' equation by the following. Define
¢ = J %-dw =¢e log w (1.4)
Then L %-w
and the linear heat equation (1.3) becomes
we, = e(w¢x)x = ewx¢x + ew¢xx (1.5)

or ¢, - 4)2 = e (16)



Differentiating (1.6) with respect to x and setting

u = —2¢ (17)
retrieves Burgers’ equation (1.2) (see [2]).

Solutions of the linear heat equation generally smooth out

with time, but for the nonlinear heat equation

W, o= (D(w)wx)x (1.8)
or w, = D'(w)w; + D(w)w,_ (1.9)
where D(w) 1is a solution-dependent diffusion coefficient,

steep fronts may develop. In that case it is expedient to transform

to a smoother variable. Following Please & Sweby [3] we define
¢=JILV’mldw (1.10)

from which

. = D¥), (1.11)



and multiplication of each side by D(w)/w leads to

¢, ~ 95 = D(W)e (1.12)

Differentiation with respect to x and use of (1.7) then leads to
a du
u +tuu = gk(D(w)EEﬂ (1.13)
(c.f. (1.2)). In the case D(w) = e this argument reduces to
that for the linear heat equation.
The choice (1.10) is given a physical interpretation in [3].

Suppose that the form of the solution w of (1.8) exhibits a steep

front whose foot lies near the x axis (see fig.l).
fig. 1
Then from conservation arguments the flux D(w)wx at a point
within the front is balanced by an amount wS swept out by the
front, where S is the speed of the front. Then
wS = —D(w)wx . (1.14)

and, if ¢ 1is the velocity potential of S , then ¢x = -S and

we = D(W)wx (1.15)



which leads to (1.10).

In many cases ¢ 1is smoother than the original function w

and (1.12) is easier to solve numerically. The argument is good
for any number of dimensions. Note that the "hyperbolic" part
- 2—
¢, ¢x =0 (1.16)

of (1.12) is independent of the diffusion coefficient D(w) ,
unlike (1.10). Note also that the speeds of the front is one half

of the wavespeed u of (1.2).



§2 Alternative Physical Interpretation of ¢

If there is no steep front in the solution the physical
argument given in §1 does not hold up. However, we note that in
the case of the linear heat equation, the particular solution

(Green’s function)

ex2/4et
w=______ (2.1)
Vvt
leads to
2
-X e
¢—E —ilogt (2.2)

so that the exponential behaviour of (2.1) is replaced by the
smoother quadratic behaviour (in x) of ¢ .

We now seek a physical interpretation of the transformation
(1.10) in terms of the speed of the "tail” of the function w .,
which does not depend on there being a steep front and allows a
more general interpretation of ¢ . Following a suggestiion of R.

LeVeque, define the tail of w to be the region x 2 X such that
Jm w(x,t)dx = constant, (2.3)
X

small or not (see fig. 2).



X
fig. 2

then differentiation of (2.3) with respect to time yields

-w(X,t).X + rwtdx =0 (2.4)
X

and, using (1.8),we find that (assuming that D(w)wx -0

as X = ®)
-w(X,t).X - (OW¥ ),y = O . (2.5)

exactly as in (1.15) with X=8 = —¢x . So we have a physical
interpretation of the transformation (1.10) for arbitrary D(w)
which does not depend on the existence of a steep front.

Note that the variable ¢ is the potential of the velocity of
the "tail", i.e. the velocity of that point beyond which there is
constant "mass".

A two-dimensional analogue may be constructed as follows:

Replace (2.3) by

J w(r.t)dQ = constant (2.6)
Q(t)



where Q(t) 1is the region exterior to a smooth closed curve . in

the plane (see fig. 3).
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fig. 3

Differentiation of (2.6) with respect to t gives

fw!.dl: + thdﬂ =0 (2.7)
r Q
where V is the velocity of a point on I' . Then, from the

two-dimensional heat equation
w, = v(D(w)zw) (2.8)
with the assumption that D(w)ww = O at infinity,we have

sz.dl + ID(w)w.dL =0 (2.9)
r

which is satisfied if we take



wve = D(w)ww (2.10)

where V = -v¢ . So the interpretation of ¢ 1is that it is the
potential of the velocity of a point of that surface I for which
(2.6) holds. This velocity is most conveniently thought of as the

normal velocity.



83 Use of Characteristics and Moving Grids

The hyperbolic part (1.16) of (1.12) may be solved exactly by
the method of characteristics (see [4]) or approximately by the
moving finite element method (MFE) (see [5]., [6]). which mimics the
characteristic solution (see [7]).

In the former case the solution is given by the ODEs

d¢ _ _42 dx _ _
dc = *x O F - (3.1)
Alternatively, using u = —2¢X we obtain the equation
u +tuu o= 0 (3.2)
with characteristics solution
du dx
qt = O on gr=u (3.3)
from which ¢ 1is obtained by
¢ = - L udx (3 4)
2 ) ’
Since u is identified with twice the value of S , the velocity

of the front of the constant "mass" tail, the characteristics move
with twice the speed of the tail: ¢x is preserved on these

characteristics.



In the approximate case, if the solution ¢ and position x

are expanded as piecewise linear functions

¢ = z ¢jaj X = z x‘joz.j (3.5)
J J

with basis functions «, and moving nodes as in fig. 4,

J

o

the MFE solution is given by

3 -
T =M on g - (mp tomp) (3.6)

where m . mp are the slopes of the approximation each side of
node j (fig. 4).

These solutions give underlying convective solutions into
which the effect of the diffusion terms must be incorporated. One
approach to the solution of (1.8) is, therefore, use of the
transformation (1.10), yielding (1.12), together with the solution

of (c.f. (3.1))

d dx
% = D(w)¢}oc - ¢; on SF= —2¢x (3.7)

or its MFE counterpart, where w is given by (1.10).



Another possibility for an approximate solution is to solve
(3.3) numerically and obtain ¢ from (3.4). The MFE method gives
correspondingly

- . 1

uy = 0 on Xg = - §(pL + uR) (3.8)
where M bR are the slopes of the piecewise linear
approximation of u either side of node j . With this speed it
is u and hence ¢ (rather than ¢x) that is convected along the
characteristic, unchanged.

From (1.12), differentiation with respect to x and

substitution of u = - %¢x gives
1 D'(w) =2
u +uu = D(w)uxx oW D(w) u (3.9)

requiring the solution (c.f. (3.3)) of

du 1 D'(w) = dx _

dt ~ D(w)uxx 2 D(w) - on 3¢ ="

(3.10)

where w is given in terms of u by (1.10) and (1.7). Note the

additional source term.

If the MFE method with linear elements is used for u then ¢
is represented by piecewise quadratics, which means that for the
linear heat equation case (2.2) will be represented exactly in

space (although there will still of course be time discretisation

errors).



A halfway house is obtained by sticking to
¢ as the main variable with the speed given by (3.3). Then the
solution required is of

d dx
a%-: D(w)q>xx on ¢

= ¢, (3.11)
and the first of these may readily be solved by any convenient
implicit method available for the linear heat equation, with w
calculated from (1.10).

From a numerical point of view, the first of (3.7) has exactly
the same difficulties encountered in the solution of convection
diffusion equations as the original form (1.12) with the convective
speed reversed, and so gives no advantage (unless the property that
¢x is preserved is particularly valuable). Equation (3.10)
isolates the diffusion from the convection at the expense of a
source term. The form (3.11) appears to be the best compromise,
isolating the diffusion but keeping the ¢ equation simple.

To illustrate the points made in this section consider the

nonlinear diffusion equation

W, = ((e + w)wx)x (3.12)

in which D(w) = e + w. This particular equation is of interest

in semiconductor process modelling [8].



The corresponding "potential™ ¢ 1is, from (1.10),

¢=w+e logw (3.13)
leading to
o, = 92 = (e + W (3.14)
Equation (3.7) is then
B 92=(c+me, on T=-20 (3.15)
while (3.10) is
g—g=(¢+w)uxx—%e:_'wu2 on g—’é—=-¢x (3.16)

The best form is that of (3.11) with

d¢
— = (e + w)¢ on
dt B

= ¢ (3.17)

Recall that w 1is given in terms of ¢ by inverting (3.13) and in

terms of u by solving

w+elogw=-%Judx. (3.18)



§4 Generalised Cole-Hopf

Returning finally to Cole-Hopf one may conjecture that there
exists a transformation which carries Burgers' equation with a
nonlinear diffusion term into a single nonlinear diffusion

equation. Writing the Burgers' equation as
u +uu o= (E(u)ux)x (4.1)
from (1.13) the appropriate transformation is of the form
d Dngi
u = _25)({\[\ = W} (4‘2)
where D(w) = E(u) . (4.3)

Although generating (1.8), since (4.2) and (4.3) are coupled the

transformation is implicit.
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