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1. Introduction.

The aim of this paper is to prove a Bauer-Fike type exclusion
theorem [1] for the generalized eigenvalue problem (GEVP) Ax = ABx
Using techniques similar to that in [2], the most general multiple
eigenvalue cases are considered and a perturbation theorem for the
eigenvalues is proved. The implications on the sensitivity of the
eigenvalues is then discussed. The result complements those by

Stewart (8]1-[11]7. (See also [4] and [12]1.)

The paper is essentially a generalization of [2] by the author on
the ordinary eigenvalue problem Ax = Ax . Other interesting references
concerning the GEVP are in [5] (6] [7] [14] [15] and the references

therein.

Consider the GEVP in the more convenient and sensible form

det(X ,A-A B) =0 =
B o

AAx = X Bx , (1a)
o

AByHA = 2B, (1b)

where x and y are the right and left eigenvectors respectively, with
[-]H denoting the hermitian, The classical eigenvalue A is thus the

ratio Aa/l Assume some sort of normalization for the eigenvectors

B

x and y , the generalized eigenvalue pair [Aa,k ) is then unique up

B

to a scaling factor and one may scale (AQ,AB) by the factor

so that the resulting eigenvalue pair in 2 has

Ni=

2 247
[Ixal * |A8| )

Z2-norm equals to unity.

Note that equation (1) treats both finite and infinite eigenvalues

similarly and a symmetry in the roles of the matrices A and B evolves.



In addition, equation (1) represents precisely how generalized eigenvalues
are calculated numerically by the QZ algorithm [7] [14], in which ordered

pairs (Aa,x ) are produced instead of A

B

Equivalently, one is trying to look for eigenvectors x and y

such that, for simple eigenvalues,

yHAx S Y {(2a)
o
yHBx N W (2b)
]
with some scaling for the vectors X,¥, €.g.
a H 3
IxI 2% <" = 1, (3a)
2 _
Assuming from now on that the matrix pencil (A-AB) 1is regular so
that det[ABA-AaB] cannot be identically zero unless Aa = AB =0 .
For the most general multiple eigenvalue structure, one has, similar
to equation (2) and the Kronecker canonical form (51,
A 0
Ylax - A, = * , (4a)
0 Ja
2
N 1]
81
H
YBX = A = , (4b)
B
0 AS
2

with some scaling for the columns of the non-singular eigenvector matrices
X and Y . (One can keep to the scaling defined by equation (3) but

the scaling only changes the values of the non-zero elements of the




matrices Aa 5 , N and A , and does not affect the
1 2

development of the theory.)

Here A and A are diagonal matrices,
% By

4
Aa dlag[la )

1 11
and
AB a diag(AB )
2 21
The matrices Ja and NB are in Jordan canonical forms
2 1
P 18 diag(J ]
2 2i
and
Ng & diag(N, ),
1 11
with diagonal elements Aa and AB (= 0) respectively, and the
2i 11
dimensions of the Jordan blocks J and N equal to p, and q,
%21 Bi . &

respectively. The generalized eigenvalues are then the ordered pairs

(Xa , A }J, k=12
ki

The columns xj and yj of the matrices X and Y now contain

the eigenvectors as well as the generalized eigenvectors or principal

vectors.

Let the matrices A and B be perturbed to A=A+ 6A and

B =B+ 6B respectively, and let Ka and A be defined similarly as

B

Aa and A in equations (4) to (8), for the perturbed regular pencil.

8

We can now present the Bauer-Fike type exclusion theorem.

(5)

(6)

(73

(8)




2. The Exclusion Theorem.

Theorem 1. Let (X ,X.) be a generalized eigenvalue pair of the

B
regular matrix pencil (A-AB) . In addition assume A® "XB-GA-XG-GBH

|- |

~

and K‘"X

YH . One has

min|X «d - X A < ¢ (9)
1,31 F My e By

with pe max(pi) , qé max[qi] the dimensions of the biggest Jordan

i i
blocks in J and N respectively, and
o B
2 1
= l’fJ ~ o~

(1) ¢ = ]AB ‘max{6,0"} , 6 = €epeg- Agl s

when 1 =2 and AB 20 ;

& = p for the 1- or - normin A and « and

1

@ = [p(p+1)/21%® for the 2- or F-norm.

(1) ¢ =6-Ak , when 1 =2 and A =0; € =1 fop

-

the 1- or w-norm and € = p® for the 2- or

F-norm.

A

= 1 ~ o~
(111) ¢ = | |-max{e,87%) , ¢ - G- A |7, when 1 =1

and i z0 ;
o

A

4

q for the 1- or o-norm and

1
[q(g+1)/21* for the 2- or F-norm.

and (iv) ¢ =€.Aek , when 1 = 1 and A, =0

A\
n

1 for the 1- or e-norm and

1
= q° for the 2- or F-norm.

N\
1

(Proof) Following the techniques in [1] and [2], consider the matrix

H N A N A = N - - .
Y OGA - A BIX = gen = A Rgd+ (I + M) (10)

with




= \ L - N . -1. H X . bl N .
My Ogrhy = A thg) YA -8R < ) -6B)X

= M, M, (11)

One can assume the invertibility of the matrix M2 » oOtherwise the

LHS of the inequality (9) vanishes.

-~ -~

From the definition of the eigenvalue (AG,AB] » the matrix in
equation (10) is singular and the matrix M1 in equations (10) and (11)

satisfies

|lM1|| 2 1 = l|m£1|| -||M3" 21 . (12)

One has to estimate "M£1" and for the Holder norms we are

considering, one has

I = max | n -in, )77 (13a)
2 B8 a a B
J 1] 13
or
[T = max leo,s - 1, (13b)
2 : B a2j o sz

depending on which block in equation (4) the maximum in equation (13)

occurs at.

Consider equation (13a), when the maximum occurs at j and denote

(A A -2 A ) by z , one has
a a

ek Bk )
- - -1 N — -1
(ghy  =ANg 7 = { 2, A, p
13 1] -
22 —Xa N
z_ e
- -1
_> P; a
{
) z
LN P




|
i D G B RN B TS
= z, ! Aa Z, 2z, Aa g Zp Zgo | oeee . (14)
[ ] e T Y T T = e o
! -1 | >t -1 :
O | z { Aa %y 23 : ;
P e T R S
| - i .
O | : i D
e Ty T 20
' I I
E Ta % z z
O : ; O ter e Tps1 “p,
SR 4+ Sy e e e e S - = == I S
I | p _
O 0 | O L 03z
L | { | 1 j
| 1 | \ -

~

Consider the cases Au #z 0 and Xa =0, ”M£1” is then majorized
using equation (14), by considering min’zkl »  which in turn majorizes
the LHS of the inequality (9). The constant & is obtained through
using different norms and thus cases (iii) and (iv) have been proved.

Note that the 2-norm result is proved by considering the F-norm of M£1

Cases (i) and (ii), mirror images of cases (iii) and (iv), are proved

similarly by using eguation (13b).

Some interesting observations can be made through Theorem 1:-

(1) the guantity on the LHS of the inequality (9), with the

~ ~ -1
scaling factor (llulz + IABIZJ 2-(|Aa..|2 + lAB..
ij ij

incorporated, has been used by various authors in [81,0101,0111,
(121,[13).  Apart from evolving naturally from the Bauer-Fike
type theorem in Theorem 1, the quantity can be interpreted in

several ways. It is a chordal metric on the Neumann sphere (91,

and the sine of the angle between the vectors (Aa,ksl and
(Aa ,AB ). In addition, one can define a partition of

ij ij
equivalence classes of generalized eigenvalue pairs (Aa,A ),

B

using the usual equivalence relation ~ for quotients




(2}

(3]

(4)

(5)

(A LA, )~ (X LA, ) iff (A A - A A) = 0. (15)
o o o

The LHS of the inequality (9) is thus a measure of the

distances between equivalence classes.

One does not need to assume the smallness of the perturbations.

Theorem 1 degenerates into the Bauer-Fike Theorem [1] and its

generalizations [2], if B =1 and 8B =0

Zero and infinite eigenvalues are treated similarly and do not

have to be ill-conditioned.

For definite matrix pairs [111(12], or when p =q = 1 ,
Theorem 1 indicates well-conditioning for the GEVP.

Consider

¢ = Ak = HXB-GA - Xa-as xde Qv
< max{lial,lisl}- X lvl-cl saf+ll s8]
: ~ . ~ 1
= ‘ABAa —AGAB'.[/[vvij) < Kvij-(ldA"+||GB"], (16)

ij ij
]2]%

T ~ i
where  vA(|x |2 + A 12)2 and v, . 2(]a |2+ A
o B ij o, 13

ij B

The result in inequality (16) is similar to that by Stewart in
[9] [10] [11]. Similarly, the quantity KV;; can be

~

considered to be a condition number of the GEVP, with «

measuring the conditioning of the eigenvectors, and v;; the

regularity of the generalized eigenvalue pair (A ,AB ] of
ij ij

the matrix pencil (A-AB) . From the QZ decomposition [7]

of the pencil, it is cbvious that vémin(vij] is the size of

i,]
the smallest possible perturbation which produces singularity




._10,.

and can be considered to be a measure of the distance between
the matrix pencil (A-AB) and its nearest singular neighbour.

Note that vij in inequality (89) is replacable by v

(6) For cases (i) and (ii) and p > 1 , the condition number
. R 5 - by %
will be 6Kvij or (@Kvij] , depending on which cases
one is considering, and where the maximum in ¢ occurs at.
The conditioning of the GEVP is thus dependent on the sizes
of p, k and vij' The quantity p reflects the deficiency of the
eigenvectors, « the conditioning of the invariant subspaces,
and vij the regularity of the generalized eigenvalue () 'AB ).
. %15 Pij
Again, note that vij can be replaced by v and the results still
hold. Note also that « is a generalization of the usual
condition number and the Jordan condition number. One can

choose a minimum k , as it is not unique.

(7) For case (ii) with XB = 0 , there is no fractional power
of the perturbation on the RHS of inequality (9), and the geo-
metric structure of the canonical form Aa does not come into
play. It is because a finite eigenvalue has been perturbed
to an infinite one and one is interested in the null space of

the matrix B . Thus the matrix Aa does not feature in

the analysis. A similar observation holds for case (iv).

(8) Return to inequality (8 ) and the definition of A ,
perturbation in the matrix A does not affect the singularity
of the matrix B , and vise versa. In other words,
perturbations in the matrix A does not change the
behaviour of the generalized eigenvalues (Aa,O] , a

traditional infinite eigenvalue. Similarly observations




(9)

- 11 -

hold for the zero eigenvalues as well.

One can use the usual continuity argument in [1] [9] to
show that the Gershgorin regions, defined by the inequality
(8) for different values of i and j , satisfying the
exclusion type theorems as in Theorems 2.1 and 2.2 by

Stewart [9].
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3. The Matrix Equation AXB - CXD = E .

Following the techniques in [2], we then try to generalize
Theorem 1 to cope with the situation when one is interested only in
part of the spectrum. As a bonus, one obtains "condition numbers” for

different clusters of generalized eigenvalues.

One needs the following theorem from [3, Theorem 1] for the

generalization:-

Theorem 2. The matrix equation
AXB - CXD = E (17)
has a unique solution if and only if
(i) The matrix pencils (A-AC) and (DB-AB) are regular,
and (ii) p(A,C) N p(D,B) = @ ,
with p(A,C) denoting the equivalence classes of generalized eigenvalue
pairs of the matrix pencil (A-AC) , defined by the equivalence

relation (15).

(Proof): It is trivial, using the QZ decompositions [7] of the

matrix pencils. u
The importance of the equation (17) to the GEVP is the same as that
of the Sylvester equation (of which equation (17) is a generalization)
to the ordinary eigenvalue problem Ax = Ax . In addition, for regular
matrix pencils (A-AC) and (D-AB) , equation (17) can be proved [3]
to be equivalent to the equation
(YA-DZ,YC-BZ) = (E,F) (18)

introduced by Stewart [8]. '

Numerical algorithms for the solution of equations (17} and (18)

are discussed in [3].
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The following corollary of Theorem 1 can be proved, for eigenvalues

satisfying an equation with a small residual.

Consider only part of the spectrum of the matrix pencil (A-AB)

Let X1 be an n x n matrix such that

1
AlX,, X)) AB1 O = B(X,.X,) Aa1 O |, (19)
O O
B, %2
and
AX1AB = Bx1Aa + D, (20)
1 1
with D 1is small residual matrix. -
A
As the matrix pencils are regular, ~a1 is full-ranked. One can
A
8

then construct the decomposition of Y. D , with Y? the left eigenvector

~

matrix corresponding to Xi 3
Y, D = ZA - Z_A . (21)

Denote X:ix1 by P and define the operator T by

~ -

T f MAg - Ag MA, (22)
2 1 2 1

the matrix P will be non-singular if T 1is invertible and T_1(D]

is small enough. (See Corollary 3 below and c.f. Thoerem 5.1 in [8].)

Note that the operator T is invertible if the conditions similar to

that in Theorem 2 are satisfied.

Denote the generalized eigenvalues of the matrix pencils

£Aa1 - AAB1) and [Aa1 = AAB ) by (a,8) and (a,B) respectively.
N . 1

Let p and g be the dimensions of the biggest Jordan blocks in

Aa and AB respectively, and denote ”X1| -|Y1” by « . One has

1 1
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the following corollary:

Corollary 3. With the assumptions and notations in this section, one

has
min|ag - Bal < ¢ (23)
a,B
where (i) ¢ = |B|-&-D-k- B|_1]}p , when B #0,B =0,and &= p
for the 1- or o-norm in
Pelgzp ! -z e (24)
o ]
AA 1
G - (p(p+1)/21% for the 2- or F-norm ;
(ii) ¢ =€-®x , when B =0, B8 =0, and & =1 for the
~L
1- or »-norm, and € = p? for the 2- or F-norm;
- A }A ~ ~ A
(iii) ¢ = |a|-@G®xela| V"9 when B8 =0,a =0, and & = q
oA 1
for the 1- or w-norm, and 6 = (q(q+1)/2]1% for the
2- or F-norm;
and (iv) ¢ =6 .Oc when B=0,a=0,and € = 1 for the 1- or
a1
©-norm, and € = g® for the 2- or F-norm.
AcHS . . .
(Proof) Let @ X2X1 i Equation (20) implies
A = P CHoa%
A PA - = s (25a)
- 8 AB PAu Y1D 01
{0t P 1™
A QKB - KB oh, - viofo, . (25b)
%2 P4 2 %
.
From equation (25), @ = T_1(D2] and Px=I if Q is small
enough. From equations (21) and (25a), one has
(A +zP MPA. = (A, +z.P NiPA (26)
a o a B B B
1 1 1 1
and the matrices ZaP_1 and ZBP-1 are now perturbations in the above
GEVP to matrices Aa and AB 5 Apply Theorem 1 to equation (28B)
1 1

and the corollary has been proved. o
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Corollary 3 will be required to prove Theorem 5 in

section 4.
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4, A Perturbation Theorem.

Consider a partitioning of the GEVP in equation (4):

ALX,,X,) A61 O = B(X,,X,) Aa1 O , (27a)
O AB O A,
2 2
and
A O Yia = | O s, (27b)
61 1 a1 1
H H
@) A Y O A y
62 2 a., 2
or
H _
Yo [AlXLX) = Aa1 @) , (28a)
Yg O A,
2}
and
H
Y, [BUX, X)) = A81 O . (28b)
Yg O 1,
2

The columns of the matrices (X1,X2] and [Y1,Y2] are permutations
of that of X and Y in equation (4) respectively, and thus the
matrices on the RHS of equation (28) are block diagonal, with sub-blocks

being permutations of those in Aa and A respectively in equation (4).

B

Applying Theorem 1 to the n, x n matrix pencil

1 1
YH(A-28)X, 4 (A-2B) - [(Aa1+Y?6Ax1] - A[A81+YTGBX1]] ;
one has
min ia1x81i . Xs1xa1i <4, (29)
where [ia1’i81] € p(A,é], [Aa S A ) €Ep(A ,A_ ) for k =1,2; $ is

ki Pki % By

now defined similarly as ¢ 1in Theorem 1, with G6A and &B replaced
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~

by YTGqu, and Y:iGBX1 respectively, «k by 1 (as the generalized

eigenvectors of (A —AAB ) are now columns of In ), and p and q
1 1 1
by Py and Q, > the dimensions of the biggest Jordan blocks in Aa
1
and AB respectively.
1

However, one is interested in the perturbation of the generalized
eigenvalues of the matrix pencil (A-AB) , rather than that of (A-)B)

A A

We can prove that (Aa1,AB1] is approximately equal to some
(Aa1,AB1J € p(A,B) , after giving up the freedom of the size of the

perturbations 6A and 6B , under some mild restrictions on the

partitioning in equations (27) and (28):-

’

Lemma 4. Let ¢ = max{||6A| 6B} be a small perturbation parameter

and let (A A, ) E p(Aa A, ) be perturbed to

al’"B1 1 81
[Aa1,xs1] and [Aaq,ksql respectively. Let (Aaq'AB1)
and (Aa ,AB ] be the corresponding Kronecker canonical
1 1 R
farms. Define the operator T by
T2 o sax i - o svsexoamn (30)
a, 2 2 81 82 2 2 o,

~

Let T be invertible and & be small enough.

A

One has

) miT Aa1 81 " AB1 - < ¢, (31)
(X ’AB1]
2/51 2/4

with ¢ = 0(e ] or O0O(e 1] ,  with P, and qy

the dimensions of the biggest Jordan blocks in Aa
/l

and AB respectively.
/l
(One can write out the complicated ¢ 1in equation (31)

in detail, though it will not be worthwhile as it only

appears in Theorem 5 as a higher order term.)
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{Proof) Equations (27) and (28) imply that

,

[ H) [ 1. ’
Y, [A+6A)(X1.X2] = Aa1 O +1E, E f.
H
Y O A E E
2 | o, 3 4 |
11 3 A r
% - ‘
Y, (B+<SB][X1,X2J AB1 O R Fy | (32)
H
Y, J O A62 Fy F,
or
A, O |+ E, E, Z, AB = A8 O i + R "R Z, (A, (33)
1 1 1 1
@) A, Ey E, Z, O AB Fy Fy Z,
2 2
for some matrices Z1 and 22
Equation (33) implies
(4, +E112p8 + E222AB = [AB +F1)21Aa + F 20, (34a)
1 1 1 1 1 1
T(z,) = F321Aa1 - 53211\81 . (34b)
Equation (34b) implies
= 2= PO _
Z, &1 [F321Aa ESZ1AB ) = 0(e)

1 1

and substituting Z, back into equation (34a) to obtain an equation similar

2
to that in (20), with the residual = 0(e?). One then proves the results in
equation (31) by applying Corollary 3. -

Note that the invertibility of T will be ensured if € 1is small

enough and the operator {A (+)JA, - A, (-)A } is invertible, i.e.
% B By Ty
p(Aa ,AB ] N p(A ) =@ . Thus a reasonable "distance" between
1 1
the two partitions in equations (27) and (28) should do the trick.

LA
a8,

~

-1 . B
{c.f.[4]1.) Note that the operator T behaves like (Aa1A82 A81xa2] , and

can be analysed using the "diff" concept in [81.
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One can then prove a perturbation theorem for the GEVP. Let the
partitioning in equations (27) and (28} be chosen such that a group of
multiple eigenvalues are grouped together in the pencil (Aa1—xAB1).
If one has a cluster of close eigenvalues instead of a set of pure
multiple eigenvalues, the cluster should be averaged and considered
multiple, with some small perturbations added to 8A and 6B . The
conditions in Lemma 4 is then likely to be satisfied, unless the
additional perturbations force the operator % in equation (30)
singular. As in the case of ordinary eigenvalue problem, the

perturbation of a set of pathologicallyclose eigenvalues are most

difficult to analyse [15].

One can prove the following theorem from Corollary 3 and Lemma 4:-

Theorem 5. With the assumptions in this section satisfied, one has

. 5 N ~ 2/r
0 m1; ] Aa1x81 - AB1Aa1 ¢ +0(e™"7) , {35)
al’"B1
A ”~ ~ A
where A—HAB1.6A-xa1-aBH cook= XAl vy 11 (36)
¢ = Ohgy/ Ay tdor (Ag,/ Ag 109, (37)

(whichever is finite)
Py and q, are the dimensions of the biggest Jordan

blocks in Aa1 and A61 respectively, and anologous to the

four cases in Theorem 1:- 1ﬁ

(1) ¢ = |i81 ECehnke iB1l—1] 1 . when AB1 # 0 'XB1 0 ;
G = P, for the 1- or e-norm, and

1
€ = [p1(p1+1l/2]2 for the 2- or F-norm;

r = Py - defined in Lemma 4.
{4 = C.pe \ =0
(ii) ¢ A-x , when ABﬂ z 0 'AS1 0
€ = 1 for the 1- or o-norm, and

&G = p% for the 2- or F-norm;

r= 4q . defined in Lemma 4.




_20_

%
(111) ¢ = [ |-E-dexe|r | 7D N en &, 20.h A0,
ol ot B1 * a1 ¢
6 = q, for the 1- or «-norm, and
b1
¢ = [q1(q1+1J/2]5 for the 2- or F-norm;
r = p,
d (iv) = Gder - N
an i ¢ Ak when AB1 o, Aa1 0 ;
¢ = 1 for the 1- or o-norm, and
1
€ = q: for the 2- or F-norm;
r < aq,

(The above four cases represent the perturbation of the finite or

infinite eigenvalue () ) to the finite or infinite eigenvalue

WELYY

(Aaq.ls1].l

(Proof) From the argument in this section leading to equation (29)

and Lemma 4, one has

~ -~

[Aa1ks1 # 0(e ') (38a)

) AB1 a1|

and

=2 = ¢ =0(e % (38b)

IAa1AB1 B1Aa1|

for some A, A and A's , and hopefully with T,

In other words, eguations (38) is equivalent to

T
-~ ) = ~ ~ 1
Aa1 81 AB1Aa1 + C(e ) (339a)

and

- ~

Atrgr T Agghgr £ 9 . (38b)

Une has to prove from equations (38) that
5 - T

5 2 1
Aa1AB1 Agihgq ¥ ¢ +0(e’) . ( 40)
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Multiplying equation (38b) by A and using equation (33a),

ol

one obtains

Aa1xa1ks1 B [Aa1AB1]Aa1 ) Aa1.¢
~ - ~ ~ -~ : T1 ~

3 . = + - Y
Martatrgr T Poatgrdige T 00Gee T2 A0

~

It A, ® 0, eguation (41) implies

T

1
a1].€ ]

‘g1 T Mgrtar t ottxaq/x * ()\-a,]/)\a,l]- ¢

which implies equation (40).

~

If Aa1 = 0 , then equations (39) now read
Aa1x61 = 0 ')
and
~ T,
= +¢ =
AB1Aa1 ¢ 0le 7)
As Aa1 =0, AB1 # 0 because of the regularity of pencils, and
equations (42) imply
" N T4
Aa1AB1 = U[EAB1/AB1]-€ 1
and
AB1Aa1 i(AB1/AB1)-¢ .

Subtracting the equation (43b) from (43a), one proves equation (40).

Similar comments to Theorem 1 in section 2 apply for Theorem 5.
Again, one has to partition the spectra in equations (27) and (28) with
care, in accordance to the discussion prior to Theorem 5, to make sure
that (i) the conditions of Corollary 3 and Lemma 4 are satisfied, and

(ii) the RHS of inequality (35) is dominated by $ . Condition (ii)

(41)

(42a)

(42b)

(43a)

{(43b)
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can be ensured by grouping multiple eigenvalues together carefully and
adding perturbations to &8A and 6B . Note that only very special
perturbations &8A and 6B will enable the RHS of inequality (35) be

dominated by the 2nd term, when (A _,,A_,) 1is perturbed from being a

a1’ R1
non-zero finite eigenvalue to a zero or infinite (Aa1,181) . when
¢ = 0 because Aa1 = AB1 = 0 or Aa1 = A81 0 (result

of nearly singular matrix-pencils), or when

P49y . 51/2,31/2 and the deficiency in eigenvectors becomes more
severe after perturbations. Adding small perturbations to A and é
should pull the GEVP of the matrix pencil [A—Aé] out of these
pathological situations. The same perturbations can then be subtracted
from (A,é] when perturbed from [A,é] (in Lemma 4). As a result,
one can assume that the RHS in inequality (35) is always dominated by
; . In other words, [A,é] is only a bridge between (A,B) and
(A,é) » and perturbations can be added and subtracted so that the

matrix pencil (A-AB) is in desirable form.

For a non-defective p-multiple eigenvalue, similar to equation (16),

one has

~

Kv71e + 0(e?)
1]

IA

AA =aA, [/, )
B aij a Bij 1j

Inequality (44) is similar to what Stewart has derived in [9] [10].

(Stewart has a factor of p on the RHS of inequality (44).)

Similarly, results as in (44) can be obtained for special cases
where the matrix pair (A,B) is definite [11] [12] or symmetric, from

Theaorem 5.

(44)
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Finally, the conditioning of an individual eigenvalue will then

. ~.~p, 1
be reflected by <3Kvi; or [fZKvij1)/ﬁ1 + Again p, reflects

the deficiency of the eilgenvectors, « the conditioning of the

invariant subspaces, and v the distances between the matrix pencil

= 1 and is a generalization of the sensitivity

i
(A-AB) and its nearest singular neighbour. Note that «k = "x1

vl

for the case ng = p1

s, introduced by Wilkinson [15].
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6. Conclusions.

A Bauer-Fike type exclusion theorem is proved for the GEVP.
A further generalization is then proved to provide a perturbation
analysis for the generalized eigenValues o? the GEVP. Perturbation
results are obtained for all generalized eigenvalues, finite and

infinite, defective or otherwise, using a chordal metric.

A generalized eigenvalue (A&'AB) will be better conditioned, if
it is less defective (in terms of its generalized eigenvectors), its

generalized invariant subspaces better conditioned, and (lkalz + ]ABIZ]

further away from zero.

Although the exclusion theorem in Theorem 1 holds for any size of
perturbations, the perturbation analysis in Theorem 5 only holds for

small perturbations.

Note that the perturbation analysis for the invariant subspaces
has been thoroughly investigated by Stewart [8], and recently by

Sun [12] [13].

Finally, as in [13], the results in this paper can be applied to

analyse the perturbation of generalized singular values.
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