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ABSTRACT

It is shown that, for the linear advection eguation, the scheme of
Jameson is almost identical to a member of a class of centrally based
schemes recently introduced by Davis. Eguivalence is shawn when the Davis
scheme is modifiéd by halving the diffusion. By comparing the diffusion
in the Davis (and a modified Davis) schemes with that in Roe's scheme,

relationships are found between these schemes and that of Jamescn.



1. INTRODUCTION

Recently Davis [1] proposed a class of centrally based schemes which are
total variation decreasing (TVD) in the sense of Harten [2]. Such schemes
extend the upwind schemes of Roe [3] and Sweby [4].

It is well known that the most successful scheme based on central differencing
is that of Jameson [5] which produces results that other schemes would like to
match.

The question arises as to whether there is a connection between the
schemes of Jameson, Davis and Roe. In this report we show that, for the
model linear advection eqguation, there is indeed a very close relationship,
namely that in rough terms Jameson’'s scheme is a (slightly modified)

Davis scheme. From this viewpoint it is then possible to show the connections
between the three schemes of Jameson, Davis and Roe.

In §2 Jameson's scheme for the linear scalar wave equation is reviewed
and its relationship with the Lax-Wendroff scheme is established, giving
jusitification for some of Jameson's empirical rules. In 83 TVD schemes
are defined and the schemes of Davis and Roe introduced. A strong connection
between the diffusion in the schemes of Davis and Jameson is established
here which is followed up in §4. Finally in §5 and 86 a comparison is made
of the diffusion in the schemes of Davis and Roe both in the cases of smoath
and shocked flow, which leads to relationships between all three schemes, and also
to a modified Davis scheme which may be identified closely with the schemes of

both Jameson and Roce.



ZaF JAMESON'S SCHEME

2.1 In reference [1] Jameson introduces Runge-Kutta (R-K) time-stepping

to iterate the Euler equations to a steady state. He also presents a

stability analysis of the scheme based on the R-K stability polynomial for

the model advection diffusion equation. We apply the analysis here to the

model advection equation.

du ou
E+a§;—0

As the Jameson's numerical method uses central spatial differencing, (2.1)

is discretized in space as

du, . (ui+1 - ui—1) -
ot 248%

(2.1)

(2.2)

Let the Fourier transform of u(x,t) be u(p,t). Taking the Fourier transform

of (2.2) gives

dd . aising A~ _
dt * Ax bl =0

where & = pAx.

Now the R-K stability polynomial for a 4th order method applied to

B (A2 O Rt
p4 . 1 + )\h + 2 i 31 ¥ 4!

where h = At, wusing (2.3), (2.4) with ) = - E%EEDE
Let the Courant number v = E%E , so that xh = - ivsin&. Then

_ . v2 (sing)?2 i(vsing)s (vsing)"
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(2.4)

(2.5)



and |p4|= 1 for vsinE = 2v2. Moreover it can be shown that Vmax < 2/2.

The Courant number v therefore has a stability bound of 2¥2 for this
scheme as given by Jameson in [5].

In Jameson's method for the Euler equations the scheme is augmented
by the addition of artificial dissipative terms. By numerical experiment he
selects a combination of second and fourth differences. The dissipation operator

is defined by Jameson as follows;

Dw = di+% = di-%
ay ~ %% [fi+; (Ugpq —yy)
€y Wyap = BUy g * 30y Uy ) ] l (2.6)
ai+% = max (0, 4,0,1/4
e§+% = max (0O, E%E - 81]
g, = [Pssq = 2Py * Py
1 pgaq * 2Py * Pyql

where p 1is the pressure and is always a positive physical quantity.
The dissipation is added to the differential equation so that
d(Axw)
dt
where § is the spatial operator for the Euler equations (see [1]).
From his computed results Jameson makes the folleowing observations:-
1. In smooth regions of the flow the scheme is not sufficiently dissipative
unless fourth differences are included.

2. Near shock waves it is found that the fourth differences tend to induce

overshoots and are therefore switched off.



3. Dissipation is required to suppress the tendency for odd and even
decoupling.

4. Although our aim is to try to see if there is a connection between centrally

differenced TVD schemes and the Jameson scheme, it proves instructive to give

first an alternative analysis of the method which sheds light on some of these

observations.

2.2 Alternative Analysis of the R-K Method

We present here an alternative approach to analysing the applicatiaon of R-K
to the model advection equation, concentrating specifically on second order
accuracy. Most schemes concentrate on this aspect, including the centrally
based TVD scheme.

We start by looking at (2.4) and noting that second order R-K schemes

are absolutely unstable. For the second order R-K polynomial is

_ . (vsing)?2
py, =1 vising - —
. 4
AY)
and [p,|* =1+ (34& > 1, i.e. the scheme is unconditionally unstable.

This is well known. Now let us look at the actual difference scheme produced
by the second order R-K method.

Equation (2.1) is spatially discretized as

du _ . [ui+,I - ui_1J . aAUu )
ot 2hx 20x Y
so that the application of second order R-K to %% = f{u) gives
e 2 B ™ pw” e atpu™)
n aAOun
where flu') = -

2Ax%



aAoun aZAtAEun
Since F(un + AtF(U™) = - p + the second order R-K method
20x% 4Ax?
generates the difference scheme
N _,,, N
Nl 0o vAQu . v ADu
u u > .
S0 Pl LR IR, B
2 i+2 i =2

We note that the diffusion term is

to odd and even point decoupling.

So far we have an unstable scheme.

decoupled and can therefore give rise

The stencil for the diffusion term is

-2 1
= . =
il i+ i+2

In fact Jameson goes to third and then

fourth order accuracy in time before he achieves a stable scheme but the

resulting Courant number is larger than the normal maximum of 1 produced

by many second order schemes.

However, a simple and obvious way to stabilise this second order R-K

(2.7)

scheme, at least for Courant numbers < 1, is to replace the uncoupled diffusion

term in (2. 7 with the more familiar diffusion term

_5—(

from the Lax-Wendroff (LW) scheme.

u’ N
i+1

In practical terms this amounts to adding

a term, T4 say, to (2.7) where
_ \)2 \)2 _
Ty = 5 lug,,m2ug+ug ) : (uy 720, +uy 5)
_\)2 (
=g Mg Mg TBU AL Yy )
- () ¥+ 0(dx)®
B Uxxxx

So we see that Td

is precisely a fourth difference dissipative term.

(2.8)



We are now in a position to give at least some explanation of the

peculiarities observed by Jameson and stated in §2.1.

1. The addition of the fourth order dissipative term to the second order
R-K difference scheme has the effect of stabilising an unstable scheme
for Courant number v < 1. Since the term is dissipative its effect
on any scheme for solving the wave equation will in general be a

stabilising one.

2. However at discontinuities LW type schemes are notorious for
giving overshoots in solutions. It is therefore perhaps not
surprising that this term has to be 'switched off’' at shocks.

The switch can clearly be seen in (2.5), where at a shock

e? . o~ D[%J and s? = 0

i+l i+l

Js By inspection the addition of the fourth difference term returns the

scheme to the normal 3 point centred coupled scheme.

Although these remarks are consistent with tne previous observations we

still have no clear understanding of the shock capturing

property of the scheme. In what follows it is assumed that in the Jameson

scheme

(a) the third and fourth order time derivative terms in the R-K scheme
serve only to enlarge the Courant number.

(b) the third and fourth order terms have no special shocK capturing

properties.



3L TOTAL VARIATION DECREASING (TVD]) SCHEMES

3.1 First we define TVD and its significance for numerical schemes,
and then give a general form for the Roe upwind TVD scheme and the more
recent centrally based scheme of Davis.

Consider the initial value problem for a scalar conservation law.

ug * +‘[u)>< = U+ a[u]uX =0 t >0
where df
alul) = (u)
du
and ulx,0) = uO[x] - ® (X (@

and where uD[x] is assumed to be of bounded total variation. A weak
solution of the scalar initial value problem (3.1) has the following
monotonicity property as a function of t (see ref. 2):

i) No new local extrema in x may be created

ii) The value of a leocal minimum is non-decreasing, the value of a

local maximum is non-increasing.
The total variation of the solution to (3.1) is defined by

Tv(u(x,t)) = sup ) |u[xk+1 £) - ulx, £
K P >

where the supremum is taken overall partitions of the real line.
It follows from the above monotonicityproperty that the total variation

in x, denoted by Tv(u(x,t)) dis non-increasing.

[\
P

i.e. Tv(u(tzJ) s TV[u(t1]] Yt

Consider now explicit finite difference schemes in conservation form which

approximate (3.1) and denote them by

(3.1)



u =L u (3.2)

A scheme of the form (3.2) is called Total Variation Diminishing if

™Y = TviLed™ s Tvid™

IA

We now state a theorem and a lemma due to Harten [2]. {(See also Lax-Jameson [6]

»

Sweby [41 ).

Theorem: A total variation diminishing scheme is menotonicity preserving.

This is one reason why TVD schemes are important since they cannot generate

spurious oscillations. Now write the scheme (3.2) in the form

n+1 n n n
u =u, - €, ;Au, , + D, 4 Au, ,
1 1 1-3 1-3 1+3 1+3
where
Au, , = U, - u
i+3 i+1 i
and
. n
& , D are functions of u

Lemma: If the coefficients of C and D of equation (3.3) satisfy the

inequalities

(@
[\
o

O
[\
O

A
N

then the scheme is TVD.

In [3] Roe presents a scheme of the form

T I S IO T S (3.5)
1 1 1

TS E LIV VAT

[N

1
2



(using the notation of Davis [1] ), where ¢, are flux limiters

which are functions of the ratios

-
1]
=g
j o=

and

2]
n
g
cC

(see also Sweby [4]).
Application of (3.4) then reveals conditions for (3.5) to be TVD.

Here D = 0 so that (3.4) reduces to 0 £ C, £1. For 0sv&g1

1+

Ni=

this is always satisfied

o
IA

o
IA
-©- -©-

if

~
o)
(RN
1A
N

Then (3.5) is certainly TVD. For ¢(r) 1 (3.5) reduces to the LW
scheme and for ¢(r) = r becomes the second order upwind Beam & Warming

method.

The difference stencil for the Roe/Sweby scheme for v > 0 1is

i-2 i-1 i i+

being the union of the stencil

i-1 i i+

for the LW stencil and

i-2 i-1 i

for Beam-Warming. Similarly for v < 0 the stencil is

i-1 i i+1 i+2

(3.5a)



_10_

3.2 Recently Davis has introduced a centrally differenced based TVD scheme

using the stencil of points

i-2 i-1 i i+1 i+2
The Davis scheme is
=l e al = - 2-[un _ ) o+ 2i-(un - 2u, + u" )
4y i 2 Ui+ { -1 2 i+ 1-1
- n n
+ (k +%[r } + k ‘[ri+1]](ui+1 N ui]
+ . n
= [Ki_%(r _13 + Kl_%(ri)](ui u _13
The Roe/Sweby scheme (3.5) can be identified in this form with
vi{1-v) +
T - (1 - ¢(Pi]] a> a0
0 aso
B 0 az0
ki, 4 =
1+3
v(1+v) -
5 [¢(ri+1] 1) a<ao

where the k's can be regarded as diffusion coefficients. Davis defines

the particular forms

o
I

-J—‘Z’l (1= [y - gtrD)

=
It

2L (- v - e, )

where ri and r; have been defined earlier (3.5a) so that the
Davis diffusion coefficient is

+ - Vv + -
k L lEL (1 - |v|)2 - {¢[ri] + ¢(ri+

i+l i+3

1]}]

Note that the Davis diffusion always contains an upwind and a downwind

(3.8)

(3.7)
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contribution, whereas the Roe/Sweby diffusion is always upwind.

3.3 We are now in a position to pursue the aim set dowr at the end
of Section 2, that is to attempt to identify the shock capturing property of the

Jameson scheme. We do this by relating it to the scheme of Davis.: We continue the

analysis from the second order R-K scheme. From equations (2.7), (2.8)

we have the following symbolic relationship.

2nd order R-K = LW - T4 (3.8a)

Note that the difference stencil of 2nd order R-K is the same as that

of the Davis scheme and that the right hand side of (3.6) can be written

LW + Ki+%Aui+% - ki—%AUi—% (3.8b)
where
K,y = Ko, + k. |
1+3 1+3 1+3
compare (3.8b) with the r.h.s. of (3.8a). The aim is now to rearrange
the terms of -1 into an expression of the form Kk, ;Au, , - Kk, ;Au, ;
d i+z7 i+3 i-37 i-z
Now
\)2
"4t g (uj,, = AUy g * BUy - duy o * us ) (3.9)
-\)2
= 7;-([u1+2-ui+1] + S[Ui_ui+1]
#3lugmuy g) o Uy pmuy )
- ¥ (L mu) (e, -3) - (upmu, (e -3))
R F B AL B HiTHi-17 g
Where r, , = Aui+:/AU1+1' Tiq " Aul_g/Aul_%
" o
I HF
v i+1 i
= - — A —_ -
(e o CRE (o W
8 [@h " ) (3.10)
= wi+% Aui+% wi-%AUi—% .
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- 2 N
say where Y, . T - %? t1 - (ri+1+1) ].
4 J

Recall that our aim is to derive a diffusion coefficient of the

form

K, , = MLL‘LD (2 - (¢(r.) + ¢(r. ) (3.11)
i+3 2 il i+1

At this stage there is a certain freedom of choice as to how to

identify ¢;+1 : w; Although we could add terms which would correspond
+1 N

=

to higher diffusion and first order accuracy, we instead concentrate an second
order accuracy as a guide so that the resulting choice of K will apply in
smooth regions of the flow.

We therefore restrict the choice of ¢;+ to use the flux

s V.

.
1
i-3

Ni=

limiters ¢ corresponding to the imposition of second order accuracy.

For second order accuracy it may be shown that

¢(r) =1 -8B + Br

where B is an arbitrary constant. This is derived by taking a linear
combination of LW and Beam-Warming such that the weights sum to one.

" We now rewrite (3.11) as

+
_ (r, +r, ,)
Kivg = l\’l“ > v[) 26[1 S S ] (3.12)

2 )

2

Comparing (3.10), (3.12) we want to match the coefficients of - y_

2
2 -
Add and subtract terms (A + Brf} i to ¢, , and let
. 1 2 1+§

o[ A+/‘+B++ri+1] =-2X [ 1—rf+rj+1

2[ P T T T |

2
From equating coefficients of r;+1, r; and constants respectively,
1 1 1

=—, B = —, = == &

B 4 4 & 4

—_ 2
Similarly add and subtract (A + Bri] [éf%fl to w; .+ Now expand
J -z

(3.10) with thesge terms included then we obtain

+ - + -
(2+r, + . ) (2 +r + r.)
vz, i i+1 _ _ i-1 i ]
5 [[1 7 } duy [1 : ] Aui_%] (3.13)
1 +r 1+, 3
w2 F[ } i [ i) |
2 LTy T T By
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+
the last term is identically zero using the definitions of &r., T..

i
Since B 1is now defined we can write (3.13) in the form

P

- +
5 ((2 - Cglry,g) + ¢(ri]])Aui+%

- (2 - (4lr)) + ¢(r;_1]]]Aui_é)
where
br) = (3 Z r)

Comparison of (3.14) and (3.8b) shows that we must add and subtract

to (3.14) a term

where

Q
13

+
ey =27 BT+ ool )
giving

. |\,|f"_’|mm'.
2 i+

1AU. — O,
z 1+

Iv[
i [ui+1Aui+

From (3.8al), (3.8b), (3.15) we have sybolically that

2nd order R-K =

IH
—
=
+
~

-
+
nNi=
>
|
~
>
[

or

2nd order R-K + lXL (o, ,Au

a 2nd order Davis

(3.14)

(3.14a)

(3.15)

(3.16)
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It can be shown that the Davis scheme is TVD if

IA
NI=

[v]

$(r) £ min (2r,1)

In practice the scheme is TVD for |v| S 1. The identity (3.16) is strictly true

3 +r

only for ¢ = 7 which only corresponds to the Davis TVD region for
3 +r
< 1
2r 7 =

but with the choice of |a| in place of o in (3.16) the Jameson scheme

will approximate the Davis scheme for ¢(r) = 1, i.e. the smooth flow region.
Fig. ( 1) shows the part of the flux ratio plane for which the schemes

correspond. In general it cannot be concluded that the (considered form of)

Jameson scheme 1s always TVD.

4. THE DIFFUSION COEFFICIENT

We naow examine the nature of the diffusion coefficient o in the scheme
above and compare it with that of Jameson in (2.5). Nete that if
o, , 20 and for o, , = |o,
1+3 1

From (3.14a)

using (3.5a) for rz, r; . Thus

+1
1
lai+1| = Z'IAaui+l| / IAui+%|
- %- AX? gif %% ot (4.1)
1+s3
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So far we have considered the model equation

a_u+a_a_u_=o
ot X

but in the Jameson code the devised scheme is used to solve the Euler
equations. Moreover at a shock the methed introduces artificial viscosity

of order Ax Uy If we write down the momentum equation actually being solved
by the scheme then it will be

dlpu) , 3lpu?) _ _ oP I 825
ot 9X 9X IX

to second order accuracy, where P is the pressure and p 1is the coefficient
of artificial viscosity. If pressure and viscous forces are assumed to be

of the same order close to the shock then we may assume

x o, oY
= H o
also assume that
2P 9°%u
el e (4.2)
then (4.1) and (4.2) imply that
B 32P
lag,gl = (8x)2 }axz 7 |4P[1 L
To second order
32P
2 = -
(Ax] Py [F’i+1 2Pi + Pi—1]
4P = [Pi+1 + 2Pi + Pi—1]
so that we obtain
la Pyaq = 25 * Pyl (4.3)
1+3 [P, + 2P, + P, ] .
i+1 i i-1
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Finally compare (2.5) with (4.3) in (3.16) we see that we have reproduced

exactly twice the Jameson coefficient of the diffusion in this case.

5. COMPARISON BETWEEN THE SCHEMES OF JAMESGON, DAVIS AND ROE

If we halve the Davis diffusion coefficient then

+
Kieg _ (Sl V1 DI P Colry) + ¢lry, )
7 "IVl 2 Z
+ -
! e [¢(riJ + ¢[ri+1]
2 7

so that we now reproduce the Jameson diffusion coefficient exactly.

Now to remain consistent we replace (3.8) by

T4 T4
2nd order R - K + - = LW - - (5.1)
and (3.16) by
T Obs 1 O, 1
d v i+3 _ -3
2nd order R - K + 75-+ iai- 3 Aui+l 5 Aui_% (5.2)
Kieg “i-3
=W Ay T Ay

If o is identified by (3.14a) for all flux limiter functions then we may
seek conditions which ensure a Jameson type scheme which will be TVD in the
sense of Davis.

There is another consequence of dividing the Davis diffusion coefficient
by two, other than obtaining equality with Jameson. The Davis scheme can be
regarded as a modified Roe scheme which relies on the Roe scheme for its
fundamental basis i.e. knowing what form the flux limiting functions ¢ should
take. In devising his scheme Davis tried to remain as close as possible to Roe,
so that he would produce comparable results for discontinuities.

Now we look at the difference between the diffusion coefficients for
smooth flow and show that this difference results in a second order truncation

between Roe and Davis.
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The Roe diffusion coefficient can be written in terms of (3.8) as

RY,, = v+ [t - [vptr - gr;2/4
(5.3)

Ro,s = (v =901 = [v]I1 - ¢lr, 0074

we denote this more generally by

+ -
R, , =R, , +R, ,

i+3 i+} i+s
and this always gives the Roe upwind diffusion V¥ v . The Davis coefficient
is

+ -
K. = v (1 - |v])(2 - (4(r,) + ¢(r;,1))/2

Denote the difference between the diffusion coefficients by

e = K "R1

i+3 i+s

+ - - *
SRS LR R folryd + olry J)) wlplry, ) - ¢[rf]
2 B 2 2[v]

First consider the form of ¢(r) giving second order accuracy as in §3,

in particular ¢(r) = EEL%—El . Take v > 0 for all x values: then,

after some cancellation

e = (1 - |v])|v](1 - r£+1]/8

This results in a difference in diffusion of

e, 1AU_ ;T e, 1AU. 1
1+z  1+3 1-3 1-3
= (1 - lv|)|v|((Aui+% - Aui+3] - (buy 4 - bug,))/8
o ~ Ax® 33U 5
= - vt - v = e+ 0x’)

The corresponding truncation error is

alx?
8

9%y
(1 - lvlJ Yoy

This shows that to second order accuracy there is a direct relationship
between the schemes of Jameson, Davis and Roe, and that the Jameson scheme

is a special case of the Davis formulation for the indicated region of the

flux ratio plane Fig. (1).
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§6 LIMITERS

So far we have considered smooth flow conditions where second order
accurate approximations can be made. In Section 4 we pointed out that at
a shock the schemes become first order accurate and that an artificial viscosity
is added. This occurs as the TVD conditions are in danger of being violated.
The scheme goes to first order accuracy to maintain the TVD condition, so
preventing oscillations.

We restrict attention to flux limiters ¢(r) of the form
¢(r) =1 - B + Br for second order accuracy in smooth regions. When the
TVD condition is threatened ¢(r) takes the form ¢(r) = yr for small r

and

¢(r) =0 r <o

Assuming that v > 0 for all x, the difference between the diffusion

coefficientS(c.f. §5) is

e = (1 - |v]) |v] (1 - YTy 4372

This results in a difference of diffusieon of

(= [v]) [v] Claug,, - Ay

i-3

) o- y[Aui+g - Aui+%J]/2

1]

(1

[v]) |v]C(1 - y)(duy,, - Aug )

- ]+ y([Aui+% - Au,

i-3

(M

- Au ))

) s 41
1+3 1+3

-y (Au

]

(1= fv]d [v] (01 - y) axeu - ydxPu o+ 0Ax*)/2

X
Compared with the Roe scheme the Davis scheme now adds a truncation error of
- = - 2
(1 = |v]) a (ax(1 vlu,, - vu Ax2)/2

which is clearly an extra first order diffusion term for +y £ 1. In particular
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for r < 0 then Davis adds (1 - |[v[) [v| Axu /2 to the standard first
order upwind diffusion doubling the diffusion!
Finally consider the differencc between the Roe diffusion coefficient

and the modified Davis diffusion cocfficient Km where we halve the Davis

diffusion. Then

+ - Ny
Kmi+% = v = fvdlr = (elryd + ¢[ri+1]]r/2l/2

and

- +
= (1 - lvl] |vl [—v(¢[ri+1] - ¢[ri]]]/4|v|

For v > 0 and second order accurate ¢ the extra truncation is still
second order. But for vy > 0 and ¢(r) = yr, corresponding to a diffusive

scheme, the difference in diffusion is

) = (AU, ., — Au,  ))/4
2 1-5
= - v(1 - v) %—u AX2 + 0(Ax®).

So the modified Davis scheme has the same diffusion as the Roe scheme
to order 0(x?)., (For r < 0 no extra diffusion is added).
It would appear that, for the model advection equation, at least for
v » 0, Jameson, modified Davis and Roe are equal to second order accuracy.
But it should be noted that whereas the modified Davis scheme and Roe scheme
can tune their Flux Limiters, should the o of Section 4 become negative

the Jameson Scheme continues with |a| for the coefficient of its diffusion.
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RESULTS

All results are for the linear advection equation using
square wave initial data and mesh ratio At/Ax = 0.9.

Figs. 2A, 2B show the result of the Davis scheme for 70 steps
and 280 steps respectively.

Figs. 3A, 3B show the result of the R-K 2nd order plus diffusion

[from equation (3.18)] for 70 steps and 280 steps respectively.

CONCLUSION

The considerations above lead us on to experimenting with variaus
modifications of the Davis & Jameson schemes. This results in new schemes
which can be proved to be TVD for special regions of the flux ratio plane.

The details will be given in a follow-up report.
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