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Abstract

A useful time step selection strategy is proposed for time stepping schemes of
three-level type, in the numerical solution of nonlinear diffusion equations for semi-
conductor process modelling. The procedure proposed requires the availability of
local truncation error estimates. Here it is first applied with the finite difference
methods, where error estimates are easily available, and then with a finite element
method of Petrov-Galerkin type. In the latter case, we find the local truncation
error estimates by using the property of the inverse of diagonally dominant matices.
Numerical experiments on a nonlinear semiconductor diffusion model have been
carried out and results show that our time step selection strategy is efficient and
robust.
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1 Introduction

The numerical solution of a nonlinear system of parabolic partial differential equations
(PDE’s) lies at the centre of semiconductor process modelling simulation problems. Our
study here is mainly concerned with the temporal discretization of such systems.

In a typical semiconductor process model, several dopants are present in a silicon base,
each with its own initial concentration profile. The purpose of a diffusion simulation is
to accurately predict these concentration profiles after a certain time interval TI under a
given temperature TE. For each dopant, the redistribution through the diffusion mecha-

nism may be characterized by the two-dimensional nonlinear partial differential equation

%—f = Div[D(C)gradC + ZCgrad ®] (1)

where C = C(z,y,t) is the dopant concentration, D is the diffusion coefficient, ® = ®(C)
is the electrostatic potential and Z = +1 depends on the dopant used. Essentially, the
quantities D and ® are in general some known nonlinear functions in C'; refer to Selberherr
[30] and Sze [34].

There exist many useful 2D semiconductor process simulators which solve systems of
nonlinear PDE’s of form (1), such as those of Penumalli [27] and Lorenz et al [21] using
finite difference methods and Borucki [6] and Gerodolle [13] using finite element methods,
to name just a few. The numerical methods used in most of these simulators for spatial
discretizations have been largely conventional in the sense that information on them may
be found in the standard literature e.g. Mitchell & Griffiths [24], Mitchell & Wait [25].
To deal with more complicated silicon base structures, it is generally believed to be better
to use the flexible finite element approach. However, as we know, standard finite element
approximations of the Galerkin type are often oscillatory for equations of non-self-adjoint
form (eg. for equation (1) after log transformation of C'). One remedy is to use a Petrov-
Galerkin method instead; refer to Barrett & Morton [5] and Scotney [31] and also the

so-called subdomain methods of Burnett [4] and Finlayson [12].



In Svoboda {33], a new variant of the Petrov-Galerkin approach is introduced, called
the ASWR method, which seeks to solve (1) using quadratic B-splines as trial basis
functions and piecewise constants as test functions. The method has since been built into
the COMPOSITE code of Lorenz [21] for process modelling; see Lorenz & Svoboda [22].
With the spatial discretization method well established, there remain many choices for
time discretization schemes. As is well known, using stable fully implicit time stepping
schemes would normally generate a nonlinear system of algebraic equations and it is often
difficult and expensive to solve such systems, if not impossible. Refer to Gresho et al [14]
and Polak et al [29] for work done in this approach.

Here we shall consider three level semi-implicit schemes, effectively linearizing any
nonlinear equations which would be generated otherwise.

To facilitate the discussion, we first consider the one dimensional case. Results on 2D
will be reported separately, although most of the analysis will follow from 1D studies.

The 1D equation corresponding to (1) may be written as

aC %) aC
- 2 (pe) @

where we have dropped the potential term in this context without essential loss of gener-
ality. Equations of the form (2) have been studied by King et al [17] and Lacey et al {18]
and solved approximately by using standard finite element methods in Ho et al [15] and
Douglas & Dupont [11] and by moving finite element methods in Baines et al [2], [3] and
[16]. Here we shall solve transformed forms of (2) by both finite difference methods and

finite element methods of the ASWR type.

2 A scaling logarithmic transformation

The problem of appropriately scaling the main variables is very necessary for semiconduc-
tor equations. In Moody & Please [26], suitable non-dimensionalisations are suggested
for such equations. However, as is well known, it remains a problem that the dopant

level of main interest is many orders of magnitude below the initial dopant level. High
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order polynomial approximations to the concentration C often show inevitably oscillatory
behaviour.

One way to avoid this problem is to transform the concentration variable into some-
thing more amenable to numerical computation, e.g. using the log transformation f =
log(C). With the new variable f, accurate approximations are naturally possible with
even low order polynomials because f becomes a polynomial function in simple cases (say

when D is constant). This particular transformation

f=log(C) (3)

has been used in Lorenz & Svoboda [22] and Svoboda [33]. With (3), equation (2) is

of _ 0 af AN
% 9% (D(ef)%> + D(ef) (a—$> (4)

To discuss time stepping schemes for (4), it is convenient to also study the following linear

transformed into

model equation

of  &f  of
o - PortVa (5)

where D, V are taken to be constants with D > 0. For solving (2), other transformations
may be considered; see Please & Sweby [28]. But in our context here, (3) has been found

to be very appropriate.

3 The spatial discretization

3.1 Petrov Galerkin methods

We now introduce the spatial discretization method for solving equation (4). Assume that

the equation is defined in [a,b]. Let us place a mesh {z;}} over [a,b] such that
Iy : a=zp< T < <any=b (6)

Denote by &; = (zj-1 +2;)/2 and hj = ¢; — z;_ the mid-points and the local mesh sizes
respectively. Define by S; and S, two spaces of piecewise polynomials of order k; and k,

respectively over each interval of Ily.



Then for a general operator equation

af - _
E—ﬁf—r z € [a,b] (7)

where L is an elliptic operator, the Petrov Galerkin method seeks the approximate solution

fn to f in space S; by insisting on

0
<%—L’f,v—r, w>=0 Yw € Sy (8)

where the inner product is defined by < u,v >= f: uvdz. Conventionally the space S
is called the test space and S, the trial space. If the two spaces are identical, the finite
element method is the standard Galerkin method. Refer to Barrett & Morton [5] and

Scotney [31] for more theoretical studies.

3.2 Test and trial spaces of the ASWR method

The two spaces Sy and S; as defined in §3.1 may be specified by various choices of integers
ky, and k,, the order of the polynomial bases involved. Here we shall consider the particular
combination of k; = 1 and k, = 3 corresponding to spaces of piecewise polynomials of
degrees 0 and 2 respectively. This choice was first made in Svoboda [33], motivated by the
simplicity of S; and, in the case of S,, the need to differentiate C' twice and the assumption
that the solution of (4) behaves like a quadratic function (which is correct in the case of
D being constant everywhere in the domain). Note that Petrov-Galerkin methods with
the choice k; = 1 may be referred to as subdomain methods; refer to Burnett [4] and
Finlayson [12].

Thus the test space S; may be represented by

Spa'n{d)j |] = 17"'71\]} (9)

where

¢J(J¢) = { (l): T € (l']'_l,.’l?]‘],

otherwise.



The specification of the trial space follows from De Boor {10, Ch.9]

S2:Span{¢]']:1’aN+2} (10)

d)' = (.’IZ - wo)j—l’ fOl‘j = 1,2’3a
i =\ (o= gyl for =i N 42

where the truncated function is defined by y, = max{y,0} and functions in S, are assumed
to be right continuous in each interval (z,_1, z;]. For a general nonuniform mesh II,, the
basis functions can be bad because some of the 1;’s may be nearly linearly dependent;
refer to De Boor [10, Ch.9] for further discussion.

A more stable set of basis functions for S, can be provided by B-splines. To construct

B-spline basis functions representing S, of (10), we define a set of knot sequence Ty =

{t;}07+* such that
t():tl :t25$0<t35$1 << TN EtN+1 <£L‘NEtN+2=tN+3=tN+4 (].].)

Based on Ty, we can construct n+2 pieces of B-spline functions of order 3 (refer to De

Boor [10, Ch.10])

Bi == (ti+3 — ti)G[ti, ti;_],ti+27 ti+3]
'3
L
(z — ) for z € [t;, tiy1]
(tigz . tigEtH—l - ti)
—t)(tiyo — ligy —a)lx — 1,
_ x 42— ) n (Ligs — @)(a k) for @ € (tiy1, tite)
(tivz — t)(tiv2 — tiv1)  (liva — Lign)(Liva — Liga)
tiys — )’ f € (tiyz2, tita)
or x i+2, ti
L (tirs — tiga)(igs — i) o

(12
where the function G(t) = (t—x)3, G[-,-,","] represents the third order divided difference
of function G and ¢ = 0,1,---, N + 1. Now with the special choice of T in (11), the
theorem of Curry & Schoenberg [9] ensures that the B-splines B;’s defined in (12) form a

stable basis for the trial space 53, i.e.
S, =span{B; |j=0,---,N +1} (13)

Note that formulae given in both Lorenz & Svoboda [22] and Svoboda [33] for B; have

misprints.



3.3 The ASWR solution

With the test and trial spaces S; and S, specified as in §3.2, the ASWR method for the
operator equation (7) follows immediately from (8). In particular the ASWR solution

fn € Sy can be written as
N+1

fn =) ai(t)Bi(z) (14)

=0

where, for equation (4), the coeflicients ; may be determined by satisfying

O _ 3 (@I _ proi (3 4\ 1.
<7_5;(D(6f )8517) D(ef )<6’L‘) a¢J>"‘0 J_1327 ’N (15)

te. for y=1,2,---, N

j+1 o i t; )
> [8 O [ By~ ) tj_}—%(D(ef‘”)%) dw]

i=j—1 tj-1 ,
) i+l 9B
_ IN () 2= —
/tj_lD(e >(Z ai(t) 8:1:) dz =0

(16)

1=5—-1
where we have used the piecewise properties of B-splines. For the linear problem (5), the

above system takes a simpler form

ji laai(t) [ B - Dautt) [* Zote -~ Vais) [ aBidx] R

i=j— 8t tj—1 g1 T tj—1 aw

where j = 1,2,---, N. In the above systems, (16) and (17), there are (N+2) unknowns
in N equations. For either system, two more equations can be provided from satisfying
the boundary conditions at @ and b. Let us assume that our problem is imposed with the

following condition

of
92 =Y at a, b (18)

where g = g(z) is some known function and /3, vy are assumed to be known parameters

Bf+~

with B4 # 0. Then for the ASWR solution (14) to satisfy (18), we need to impose

! 0B;
Sail) [8Bia) + 25 (0)] = sta

N1 . (19)
;V (1) lﬂBi(b) i v%(b)l = g(b)



Thus the semi-discrete ASWR solution to equation (4) with (18) is obtained by solving
(16) and (19); while the solution to (5) with (18) is given by solving (17) and (19).

To see the close relationship of ASWR method with the standard Galerkin method,
we have taken h; = h and found that, for the linear problem (5) with the Neumann
boundary conditions (8 = g = 0 and y = 1), the system corresponding to (17) and (19)

can be written as

da

RE:Ta-I—Sa (20)
where o = [ag(t), a1 (t), -+, an+1 ()],
(15 1 [ -1 1 |
L 1 1 D 1 -2 1
R:— T:—— §
6 h
1 1 1 =2 1
i 1 1 -1
[ -1 1 |
v -1 0 1
-1 0 1
-1 1

are all (N+2)x(N+2) tridiagonal matrices. It can be shown that the matrices R, T
and S are identical to those obtained from applying the Galerkin method using piecewise
linear elements. However the two finite element solutions will be different since one is

piecewise linear, the other piecewise quadratic.

4 Predictor corrector schemes
4.1 Introduction

As discussed in §1, semi-implicit time stepping schemes are easy to implement for solving
a nonlinear parabolic PDE. For equation (4), we have analyzed in Chen [7] a class of
three-level semi-implicit schemes including those of the following form :

1 & : D(eﬁﬁl) 2 : s [ EfitT)?

. I+ _ §? 7+ D(efn n 21

R Lt = P et (v ) + D) (5 (21)

=0
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2 2
where fT = f(zn,t.), Y we=0, > v =1 and § and 6 denote the first and second
£=0 £=0
order difference operator respectively :

Sfi=fia—fi, and Sfi=fi-2fi+Ff,

From linear stability analysis and subsequent experiments, it was noted that some simple
schemes do have stability restrictions on At depending on Ax, such as the Euler scheme
(with wg = —wy = =1, wy = 0 and vy = vy =0, v; = 1) and the Crank-Nicolson scheme
(with wy = —wy = —1, w; = 0 and vy = v, = 1/2, vy = 0). These schemes are therefore
not ideal if we are to use very fine meshes.

Another problem associated with three-level (or more generally linear multi-level)
schemes is that values involved at the intermediate time levels are also not known and
therefore must be somehow provided. This can be easily accomplished in certain cases,
e.g. if uniform time stepping in At is permitted. In a more general situation, these
intermediate values may be obtained by using explicit methods or methods involving
fewer time levels, leading to the so-called predictor-corrector (PC) type schemes.

Predictor-corrector schemes have been extensively studied for solving ordinary differ-
ential equations; refer to Lambert [19]. Limited applications to parabolic PDE’s can be
found in the literature; e.g. see Ames [1] and Douglas & Dupont [11], where the Crank-
Nicolson scheme based method was investigated. This kind of work has been focused on
solving self-adjoint PDE’s of form (1) or (2). See also Strehmel et al [32].

Here we shall study an Euler scheme based PC method throughout this section for
simplicity, although other schemes may be analyzed in a similar manner. But we shall
investigate the non-self-adjoint PDE (4). Following (21), we can obtain the following PC

scheme :

Fit—fi D() 4 e PR
AL = agr VST D) | R
fit?— i D(ef 5f£;+")2

2At T Aa? 2Azx

where we have allowed 6 # 1 for generality.

(22)

7+6
)

52f,{+2 e D(ef1’;+9) <



4.2 Linear stability analysis

We now proceed to analyze the stability of (22). For this purpose, we apply (22) to

equation (5) and obtain the following

{ (1 — 006%) i+ = (1 + 0wd) fi

(1 - 208°) 4 = 3B 340 + f} o

where 0 = DAt/Az? and w = VAt/(2Az). Then we can show that

THEOREM 1 (stability) Provided that At < & and § > 0, the scheme (22) for (5),
i.e. (28) is stable.

Proof. Using the von Neumann analysis, we can obtain the amplification factor (by

comparing errors at ¢t = ¢; and ¢t = t;49) as

p = RHS/LHS (24)

where LHS = 1 + 8osin?§, RHS = |  dwisind=80®sin’¢ 14 ; — ./~ To find stability

27 1+480 sin® %

conditions, we require |u| < 1 for all At with Az fixed, leading to the requirement

2

ll + 400 sin® g — 80w?” sin® {] + 16w? sin® €

E (25)
< |[1440(2 + 0)sin® == 3200* sin® ;l
We may simplify the inequality to
40%w? sin® £ (sin? € — o sin® g) < w?(# — 1)sin® £ + o sin® g + R (26)

where R = 64820 sin® g + 1600°(2 + ) sine% + 40%(1 + 20)sin4§ > 0 for § > 0. Let
s = sin® % Then for £ # 0, 7, we get the following sufficient condition for (26) to hold

o 6—1
1602 u 4 (27)

0% (w? — 0)s — O*w?s? <

Now observe that w? — o = % (VTzAt - D) < 0 because At < ’:,—[2). On the other hand,
the right hand side of (27) is non-negative for § > 0 since (1 — 8)At < At < D/V?. Thus
(27) holds and hence the scheme (22) is stable. DO

9



Note that Theorem 1 states that the stability restriction of our predictor-corrector
scheme, for a time step At, is actually independent of the spatial discretization; while the
stability restriction of the Euler based three-level scheme is known to be dependent on

Az. This suggests that our predictor-corrector scheme should be more favourable.

4.3 An error analysis

Let us again consider the linear model equation (5) applied with the predictor corrector
(PC) scheme (22). Denote by F! = F(z,,t;) the exact solution of (5). Then we can
define the local truncation errors (LTE’s) and global errors (GI%’s) respectively by

LTE’s for predictor and corrector steps :

Fite—F1 D, ;o

Tp = L = = O_'-F,({-'—o = —‘ 6FT{
OAt  Ag? 20 (28)

Fit? _ Fi D ., . Voo .

T = —2 B S Rt G FIe
i 2At Ng?™ " TACAN
GE’s for predictor and corrector steps :
= F3H0 - ¥

{ 6]:2 Fit? _ fit2 (29)

Following (23) and (28), we have

(1 - 008 FiH = (1 + 0wb)FI + O At, 20
(1 — 2062)Fi*? = 2WE FIt? + Fi + 2Atr, (30)
On subtracting (23) from (30), we obtain the relationship between 7’s and e’s
(1 —006%)e, = 0ALT, (31)
(1 —206%)e. = 2wée, + 2ALT,

where we have assumed that epna = F£2 — f2 = 0. The GE of one PC step is hence given

by substituting the first equation of (31) into the second one

ec = 20At*(1 — 206%)7! (1 — 058641, + 2A¢(1 — 206%) 7, (32)

2Az
To further simplify (32), we use Taylor expansions at (x,,t;) in (28) to get

{ 7, = ROAt + RMAL? + R Az?

r. = ROAt + RDA + RO A2 (33)

[ [0}

10



where . . , - .
RO =45 (V& _pZE) RO =21~ a)va - D2E]

1) _ 8% a* [1aF YO 1) _ 92 {r2 F _ 4D 8*F
B = 7."377(3 o~ Dar) BV =g (2 - SV — 2L
R =12 (2% + VF), RP =R

Now it is easy to see that the dominant term in (32) is the second one. Thus we have
shown that the scheme (23) is locally of first order, globally of second order in time, and

of second order in space.

4.4 Time stepping control

We shall introduce a time stepping strategy for automatic step size selection. To this end,
we mainly use 7., the dominant part of the underlying global error e, in (32), for error

control.

4.4.1 Choice of the predictor step

We first discuss the choice of the predictor step, or equivalently the choice of 8, in an
attempt to minimize the error 7.. Ideally we should consider 7. of (33) to be a function of
6 and then proceed to solve the minimization problem under the constraint that 6 > 0.
But this is not possible since the unknown quantity At would be required. One way to
make an a priori choice on 0 is to minimize the coefficient R( instead. Because R
is also a discrete function of z,, we shall now look for a least-squares solution to the
minimization of |R()].

Let us rewrite R as a, — 0b, at point z, where a, = VQ%‘? — ng%f and b, =

V2 82F + DV . Construct a quadratic function of 8 by

N N
Q(a):z_j( — 0b,,) Zzﬁ—zoz b)+§_ja'g (34)

The solution of minimizing () is generally given by

N N
= anby [ D B2 (35)
n=1 n=1

11



However we are only interested in positive §* which is only possible if YN L anb, > 0.
Otherwise we have to look for the smallest positive § which minimizes |R{?)| pointwise or
simply fix . If the choice of fixed § = 1 is used, then the time stepping scheme resembles

the more conventional three-level scheme as discussed in [7].

4.4.2 Choice of the corrector step At

At each time level t = t;, the determination of 6 in §4.4.1 requires the calculation of
R%O) pointwise and this quantity represents the leading term in the local truncation error.

Thus the following choice for At can be made
At < TOL/ max |R?)| (36)

from a prescribed tolerance TOL. Such a choice for At should of course be subject to the

stability constraint (see Theorem 1)
At < D/V?

In general, TOL must not be too large and should be comparable to |R?)|Az?.
We remark that that, since the GE’s cannot be easily obtained a priori, the idea
of applying the Milne’s device to estimate high derivative terms by using the solutions
4. fi*? is unfortunately not applicable; refer to Lambert [19] for the general idea and

Gresho [14] for one such application.

5 Test examples

To carry out numerical experiments on our proposed scheme, we shall consider the fol-

lowing 1D nonlinear diffusion equation (see King & Please [17])

dc J dc
where the nonlinear diffusion coefficient is given by
D;
d(c) 1+ Bne/n)

T 1+p

12



with ne = 1(c+/c® +4n}) and D;, B, n; are positive constants. The model equation
has been tested before; see Baines, Birkett & Sweby [2] and Baines, Please & Sweby (3].

Following Moody & Please [26], we may nondimensionalize (37) by using
C=c/ni, D=d/Di, t=TDi

and write the new equation as (2), s.e.

2.2 (D(C)%> (38)

where

D(C) = T—i—ﬁ {1 4 g (C+VT7¥ 4)] (39)

Let us suppose that (38) is defined in [0, 1], equipped with the Neumann boundary con-
dition
o0 _
0z
Choose the initial profile at ¢ = 0 to be the Gaussian distribution

0 at ¢ =0, and 1 (40)

C(z,0) = Hexp [—S(ar - R)Z] (41)

where the parameters H, S, R can be chosen to reflect the difficulty of the problem.
In process modelling, H = 100, S = 100 and R = 0.25 correspond approximately to
the physical specification of an arsenic dose N = 1.25x10'® cm™?, straggle o = 0.05
pm, intrinsic carrier concentration n; = 10'® cm™, and intrinsic diffusion coefficient
D; = 5 x 107® um?/s, which can be worked out by using the true Gaussian profile

c(z,0) = qur exp [-(z — R)?/(4c?)], where R corresponds to the depth of the implant.

o

Using the transformation (3), equation (38) can be written in the form of (4) i.e.
af 9 Nl INEIAY

We shall now proceed to solve (42) in this section by finite difference methods and in the

next section by the ASWR method.

13



5.1 Adaptive and fixed time stepping

Using scheme (22), we have solved equation (42) (taking 8 = 100) for the following two

cases

1. H=100, S=100, R=0.25

2. H=110, $S=121, R=0.15

We take the number of subdivisions of [0,1] to be N=100 (or, equivalently, the step size
Az = 107?) and set the time T=20,000 seconds (or t=1073) and the tolerance TOL=10"2
Using Theorem 1, given the initial profiles, we find that initial stability restrictions on
At, independent of Az, for the above two cases are respectively At < 4.5 x 107° and
At < 2.4 x 1073, This will serve as a guide to choosing the time step size. For our tests
from now on, we shall use At = 107° for uniform time stepping unless stated otherwise.

In Figs.1-2, we show results from implementing case 1, where the three curves (”solid”,
"dotted” and ”mixed-dotted”) respectively represent the accurate solution, the solution
using adaptive time stepping (see §4.4) and the solution using uniform time stepping.
While the uniform stepping requires 500 steps to find the approximate solution, the adap-
tive stepping only needs 108 steps — about one fifth as many steps.

Similar results from running case 2 are shown in Figs.3-4. The test case represents
a more difficult problem than case 1, so a much smaller (scaled) time step of At =
10~7 has to be taken for the uniform stepping case. This means that 1250 steps are
needed to acquire the solution at the time 7™ = 5 x 10° (corresponding to the scaled
time t* = 2.5 x 107*). In contrast, the adaptive stepping only takes 84 steps. But the
uniform solution has become unstable, while the adaptive solution remains stable. More
importantly, it is not possible to obtain a stable solution for T > T* with At = 1077,
However our adaptive stepping does succeed in getting a reasonable solution at T', with
132 time steps. Note that Figs.3-4 shows solutions of the two stepping methods for both
T* and T'.

14



5.2 Alternative calculation of first order derivative terms

The failure of scheme (22) for case 2 with uniform time stepping prompts us to seek further
improvements for the scheme. We have found that much improved results can be obtained
if we use a cross-product differencing instead of a central differencing approximation to
all first order derivative terms involved. In detail, we can modify scheme (22) to

fnj-l—ﬂ = j'{ = D({J ) 2 pid 3 u+1 ff‘rf r{ = jn |
TN A Rl ¥ ( A

B =B D) s ey (o =S (B = B
2A1 Aa? e Aw Az

(43)

The order of approximation remains unchanged after the modification. This can be veri-

fied from applying the Taylor’s expansion

c 2 2
In+1 — Gn In — Gn-1 _ 6gn . A:EQ 829 3
( Az > < Az ) N (QAx) 4 <3m2 +0(A")

for any smooth function g.

With the modified scheme (43), we have re-calculated the two test cases of §5.1. For
case 1, almost identical results are obtained as those of §5.1. But for the more difficult
case 2, At = 1077 is acceptable for scheme (43) with uniform time stepping and we present
results, in Figs.5-6, from using both the uniform and adaptive step strategy, where the
latter takes 119 time steps.

The much improved performance implies that the cross-product approximation is su-

perior to the central differencing and hence should be used whenever possible.

6 Application of the ASWR method

We now consider the solution of the nonlinear diffusion equation (42) with conditions (40)
and (41) by the ASWR method and, in particular, test the two cases already solved by

finite difference methods in §5.1.
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6.1 Spline approximation

It is of interest to discuss, at this point, some error analysis theory of the spline ap-
proximation. One immediate application of spline approximation is to approximate the
initial function f(z,0) in the space S, (see §3.2). There are a number of methods which
can provide good approximations. Extensive discussion can be found in De Boor [10].
Interpolation is an often used technique.

In our context, two interpolation approximations may be used : the quasi-interpolants
and the conventional interpolant. Given a smooth function g € C?*[a,b], we may denote
by Ig its interpolation approximation. We seek ¢ from S;. The quasi-interpolant can be

explicitly constructed by .
+

]g = Qg = Z @.iBi($) (44)
1=0
with
o (i ) (i —m) AP f
& = g(m) + 5 Tu2 (m:)
such that
lg — Ig||leo < constAz’w(g"; Az) (45)

where t; < 1; < t;;3, w denotes the modulus of continuity for function g and Az =
max{h;} (see §3). The approximation Qg is called the quasi-interpolant of g because it
approximates ¢ and its derivative ¢’ at optimal orders but does not agree with g at the
nodes 7;. Unfortunately it is not easy to generalize the method to the 2D case. We here

prefer to use the conventional interpolation

N+1
Ig= "> o;Bi(x) (46)

1=0
such that (Ig)(¢;) = g(¢;) and this leads to a linear system with a tridiagonal matrix
J+1
> Bi(&5) = 9(&)), 7=0,1,2,--- NN +1 (47)

1=5—1
where ¢ = a and én41 = b and {£;}) is some strictly monotone sequence in (a,b). When

the sequence is chosen to be the mid-points as defined in §3.1, it can be shown that the

error bound (45) also holds.
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6.2 The numerical scheme

In §3.3, we have presented the ASWR method for semi-discrete solution of equation (42).
We now combine the method with the specific predictor corrector scheme (22). To simplify
the implementation, we shall use the equivalence of piecewise quadratic functions in local
and global (B-spline) representations for treating all explicit quantities. More precisely,
on the known time level 7 = 7 or 7 = j + 0, the local representation for f5; will be used.
Since f§ € Sz, we may expand it, on each interval Iy = (z4-1, k), into the Taylor series

centred at &y

P = f]"\-](é.k)+($—€k)f]<](xk) —Aiﬂr(mk—l) +o(s—t) fh(zy) + ffv(Am;;l) — 2% (&) (48)

Using P, to replace ff; locally, we can write the full ASWR discretization for (42) (i.e.

(4)) as

k41 d 0B,

[ Bide — 0At | = | D(P] d
izzkzlaz [/Ik i e ( Nlc)a z
:/ P;'dexwm/ D(Pi; ) (a—gf—’“) dz,

e, o= el
i #2 | [ Bz —oat [ 2 (per,) 28 4 o

20t | — - | dz
zzk:loz [/ T — Ikal‘( ( Nlc)(-’_)a:) l}
DR
_f Pl dae + .mr[ D) | | da,
r

| o™ =], oy = oy,

where k = 1,---, N. Evidently the coeflicients at the right hand side of (49) involving
D(P)(%)2 will have to be evaluated numerically e.g. by using some Gaussian-Legendre

quadrature rule. However the remaining integrals can be analytically calculated.

6.3 A local truncation error analysis

We now consider the temporal mesh adaption, which requires local truncation error es-
timates (see §4.4). To carry out a local truncation error analysis for (49), it is necessary

to express quantities {a]} for 7 = 7,5 4+ 6,7 + 2 in terms of the original variable f. This
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involves the solution of a linear tridiagonal system (see (46) of §6.1). On the other hand,
each of is determined by all of { f§(¢x)} since the inverse of a band matrix is full and this
global dependence is not suitable for a local error analysis. However interpolation using
B-splines always generates a diagonally dominant matrix.

It is known that the elements of the inverse of a diagonally dominant matrix are
bounded in an exponentially decaying manner along each row or column. Refer to Concus,
Golub & Meurant [8] and Meurant [23]. A simple method to find approximations for
such an inverse proceeds as follows. Suppose A = D — B, where D is the diagonal of the
diagonally dominant matrix A. Then ||D~!'B|| < 1 and A™! = (I-D7'B)~'D~". The first
part of A™! may be expanded in a convergent power series (I — DB = i(D‘lB)k.

k=0
Further

AT =3 (D'B)* D! (50)
k=0
may be used to provide approximations by truncating the series.

In our applications, the fact that the inverse of a diagonally dominant matrix may
be accurately approximated by a band matrix corresponds to local dependence being
dominant. Without using (50), we may compute A™' numerically and find a band ap-
proximation from the exact inverse.

Now consider the linear model problem (5) and employ an uniform spatial mesh IIy

(see (6)). Then the interpolation relation (47) becomes
(7 1

1 6 1 85] ./:N(fl)
e CY:2 _8 ./N(:f'z) (51)
1 ? ; an In(én)

It can be verified that a reasonable approximation for the inverse of the coeflicient matrix

1s
1.25 —0.25
—0.25 1.5 —0.25

(52)

oo | —

-0.25 15 —0.25
—-0.25 1.25
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Therefore for a typical k (= 2,---, N — 1), we have the following approximate solution of
(51)
= 2 [6/5(6) — FR(Ehsn) — Fi(Ehn) (53)
For equation (5), the local truncation error of the ASWR corrector step can be shown
to be the following

1
TA T ToAt

. D .
8, (aJ+2 + 4ot + aiﬁ) — _A:ﬂ&?aﬁz Z 5a’+9 (54)

where 6;04%? = aJ*? — . Now with the approximation (53), the local truncation error

of the ASWR may be expressed in terms of the true solution F\(z,t)

;
o= g [2E AR 4 FED) - (I 4 D)
~ 2[8( W+ FY - (FL + FiYD) — 14FY] (55)
/ :
—aas (UL — B — (P - Fi9))

THEOREM 2 (LTE for ASWR) For equation (5), using the ASWR finite element

method with the predictor corrector scheme (22), the local truncation error may be esti-

mated by
ma=ROAt+ ROALZ + RPAZ? 4 - (56)
where at (&, 1)
_ PO
RY) = - % ){(ji = 3T2)V2—r —4D ;jz]
A

Proof. The result follows immediately from the Taylor expansions of (55) at (&,t;).
Note that Ry © = RO from (33), which is expected from applying the same time stepping
scheme. O

With the local error estimates of Theorem 2, automatic selection of temporal step sizes
(of 8 and At) follows from the strategy of §4.4. Below we shall present our test results

from the solution of system (49) for the two cases of §5.1.
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In Figs.7-8 and Figs.9-10, we show the plots of running the test cases of §5.1 respec-
tively, using the ASWR method with our time stepping control, where the ”"solid” line
again denotes the accurate solution at 7' = 2x10*. Respectively for the two test cases,
the number of time steps taken are 38 and 374. Here we note that for the simpler test
case 1 our adaptive ASWR method is faster than the finite difference method but for the
more difficult case 2 the converse is true.

Recall from §5.2 that an alternative treatment for the first order derivative terms of the
test equation (4) may improve the performance of the finite difference method. To utilize
the idea for the ASWR finite element method, we can use the following approximation
for the calculation of the right hand sides of (49)

(% ) - o{filern) = IR (€1)) {.fmsk)A—wf,s(xk)} (57)

Using (57) to modify our adaptive method, we have solved the more difficult case 2 with
improved results obtained, as shown Figs.11-12, where 322 time steps are required. The
improvement is not as dramatic as for the finite difference method (see Figs.5-6). Never-

theless, the incorporation of the cross product approximation (57) is still recommended.

7 Conclusions

In this report we have investigated the problem of automatic time step selection for a
predictor-corrector scheme applied to both the finite difference and finite element Petrov-
Galerkin methods for a process modelling diffusion model. The strategy for the hybrid
predictor-corrector method (using ‘off-step’ time levels) seeks a nearly optimal predictor
step in order to minimize the one step local truncation error and then selects the corrector
step via controlling the local truncation error. For the finite element method of the ASWR
type, an appropriate approximation has been found to estimate the local truncation error
and further to apply the time stepping strategy designed for the finite difference method.

Numerical experiments on solving the 1D nonlinear semiconductor diffusion equations are
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carried out, which demonstrate the efficiency of our proposed adaptive strategy. The sys-
tematic development presented here serves us as a guide in investigating the 2D nonlinear
diffusion equations. Some new results have been obtained from our 2D study and further

details will be reported soon.
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Figure 1. Finite difference methods using the ASWR time stepping
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Figure 2. Finite difference methods using the ASWR time stepping
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Figure 3. Finite difference methods using the ASWR time stepping
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Figure 4. Finite difference methods using the ASWR time stepping
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e Figure 7. ASWR finite element methods using the ASWR time stepping
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- Figure 8. ASWR finite element methods using the ASWR time stepping
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Figure 10. ASWR finite element methods using the ASWR time stepping
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Figure 11. ASWR finite element methods using the ASWR time stepping
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