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Abstract

Lagrangian codes have seemed to rely on either bilinear elements on
quadrilaterals or linears on triangles. Both these elements have their
advantages and disadvantages. In this paper we shall search for higher order
elements and consider whether it succumbs to a spurious mode - the problem with
bilinears - or to mesh locking - a problem with the linears. Having found a
promising element we then suggest another property that these finite elements

ought to have but in fact our new element doesn't.






1. INTRODUCTION

Bilinear elements, using centroid quadrature, have a problem in that a
spurious mode exists that allows the nodes to move in a prescribed way that
produces no restoring forces, ie there is no resistance to this movement. This
phenomenon is called hour-glassing because of the way this velocity pattern
distorts the elements. It must be controlled if the spurious mode is not to
swamp the solution. However, if the spurious mode is controlled too vigorously
then the elements may lock.

Later in this section we will review the problem of hour-glassing for the
bilinear element and will look at how it may be controlled.

In Section 2 we shall then look to see what spurious modes are present
for other elements and using different quadratures. (In practice centroid
quadrature is the one most likely to be used). We shall select the six-noded
quadratic triangle with centroid or vertex quadrature as being the most promising
candidate.

In Section 3 the problem of mesh locking will be looked at. We
tentatively suggest why linear triangular elements tend to lock, why bilinears do
if the spurious mode is damped too much and why the quadratic elements won't.

Finally, in Section 4, we discuss the reasons why such a promising
element failed to performed in practice and what extra tests an element should be
subjected to before being allowed near a Lagrangian code.

Margolin & Pyun (1987) considered the problem of hourglassing on bilinear
elements. A spurious or hourglassing mode is defined to be a velocity field that
deforms the element whilst producing no restoring forces. In this context no

restoring forces results from the element integral (or an approximation thereto)
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of the divergence of the velocity field is zero on the element, ie

J Y .V o= 0

E

= No restoring forces on element E.

They consider a quadrilateral with u & v velocity components given as below:

They then represent the 8 velocity components in the cell by an 8-dimensional

vector
vy = (uly Uy, Uy, U, Vi, V3, V3, qu)-

Margolin & Pyun identify six of the eight degrees of freedom with six
physical modes of motion and with six mathematical objects. The six physical
modes are:

one pattern of horizontal translation

one pattern of vertical translation

one pattern of rotation

one pattern of horizontal strain

one pattern of vertical strain

one pattern of shear strain



The six mathematical objects are then:

X 4 ox 4y

IQJ
I

~ -~ du dv Jv
u, Vv, ' '

[ob)

The idea is then to produce a basis for the eight-dimensional space, L,,
Ly, ..., Lg where the first six vectors correspond to the six mathematical
quantities. L; and Lg are then found by orthogonalisation and must be spurious.

Assuming the basis vectors to be orthonormal, ie L; . L; = 1 V; we can

then damp the spurious mode as follows:

8
\_’=X‘a§ (¥ . Ly L,
=7

where a is to be chosen. A range of

0.01 < a < 0.05
is recommended by Margolin & Pyun. a = % would mean the total removal of the
spurious mode.

In this paper we will proceed slightly differently in that we will
deliberately seek out the non-restoring modes. This is explained by using the
bilinear element as an example.

Using centroid quadrature the integrals of the two spatial gradients we

are interested in are given by

du - ((uy - u)(yy - y4) + (U - u)(y; - y1))/2A
ix
0y - ((vy - v3) (x4 - %) + (Vy - V) (X, - X3))/2A
dy

where A = area of the quadrilateral.
By observation we see that the only way for these to be zero is if
u; = U, and u, = u,

and similarly in v.
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There are two independent ways of accomplishing this, firstly
W =u; =1=mu, =y,

and U; = U,

1 and uy; = u, = -1.

Again similarly in v. The first produces no restoring force but does not
deform the element and is allowable. The second is not and corresponds to L, of
Margolin & Pyun. Lg is just the v version of this, ie

L, = % (1, -1, 1, -1, 0, 0, 0, 0)

Le

» (0, 0, 0, O, 1, -1, 1, -1).

2. SPURIOUS MODES WITH OTHER ELEMENTS AND OTHER QUADRATURES

We will always transform our (irregular) triangle in (x, y) space on to

the standard triangle in (p, q) space which looks like

(0, 1)
\'\._\x‘ q
| ~ I_____, P
(0, 0) (1, 0)

We then need to calculate a transformation from (p, q) space to (x, y)

space giving x = x (p, q) and y =y (p, Q).

Having done this we can define the matrix

ax 9z
ap aq
dy dy
dp dq

and inverting this gives a matrix which will equal

dp dp
Jx dy
da 4q

dx dy
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With this matrix we can then calculate the derivatives we are interested
in, namely

The transformation is given by

t=1(1-p-q) t; +pty + qt,

where t can be X, y or even u.

Clearly the derivatives are constants and so the method of integration is

irrelevant, we will arrive at

du -1 ;

(uy - ug) (y2 - y3) - (uy - uz) (¥ - ¥3)
ax 2A 1

yar

J

We are using here, and will continue to use, the very sloppy notation of

letting %9/, actually equal [ %4/, .

It is easy to see that for this to be zero we need

U; = ug and u, = uy
u; = 4, = uy.

This is a quite allowable mode and so there are no spurious modes,

The
argument for %/, is trivially the same.



Bilinear Elements and Vertex Quadrature

Having seen two simple examples we will not bore the reader with another

as there is tedium in excess to come. We just state that bilinear

elements when used in conjunction with vertex quadrature do not support any

spurious modes.

Six-Noded Quadratic Triangle and Centroid Quadrature

The six-noded quadratic triangle element

is transferred on to the standard triangle in (p, q) space

0,1) &

®
o
Lio)

(0,0) 1 2 3 (1,0)
by the transformation
t=(@2p+2q9 -1) (p+q-1)t, -4p (p+q-1)¢t,
+p(2p - 1) t; + 4pqt, + q(2q -1) ts
-4q (p +q - 1) tg,

where t can again represent X, y or u.



Putting
D = (y, - y6) (%5 - 16%3) + (¥y5 - y1) (4%Xg - X3)
+ (¥, - Y2) (16 - 4%3) + (¥1 - ¥3) (4%; - Xs)
+ (ys - y3) (X - 4x) + (¥s - y2) (4xg - 16%,)

we obtain the following formula for the centroid integral of u,.

o s { (up - ug) (ys - 4yz) + (up - us) (4¥s - ¥3)

+ (us - uy) (4y, - y1) + (U - u,) (4ys - 16y,)
+ (uy - ug) (4y; - 16y,) + (u, - uy) (4y; - 16ys) } /D
For this to be zero we require, for example
U = U3 = Us
Uz = Uy = Ug
and similarly
Vy = V3 = Vg
Vy =V, = Vg

One way of achieving this just leads to uniform translation of the

element and so is non-deforming. In the velocity space
(uy, uy, uz, u,, us, Ug, Vi, Vu, Vi, V,, Vs, Vg)
two spurious modes are then
(, -1, 1, -1, 1, -1, 0, 0, O, O, O, O)
(0, 0, 0, 0,0, 0,1, -1, 1, -1, 1, -1)

The two other spurious modes, four if we count the corresponding v-velocity

vector, are given by:
(_5) ;‘; 41 _1%, ]-) ]-)

(27 -3/2, 41 Liv _61 _]-)
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Six-noded Quadratic Triangles and Vertex Quadrature

Let

D = 6(- 3x1y; - 16xgy; + 4xgy; + 16%x,y6 + 4Xsy, - 4%,¥s
- 3Xsy1 - 4Xg¥e + 3%gyy + Xg¥s - XsY3 + 3%y¥s
+ 12%,y, - 12%,,y6 - 12x,y; + 12%4y,)

E = 6(léx,ys + 4x1y, - 16xgy, - 4%y, - X1¥3 + 4XgYs
+ 3%5y1 - 43¥s + Xy1 + 3XgY¥s - 3Xsyy - 3Xyys
+ 12%xgys + 12x5y, - 12%,y5 - 12xsyg)

F o= 6(4xyy, - 4%y1 - 3%1y3 - 4Xsy; + 4%p¥s5 + Xsy;, + 3%gy;
- 3%gys + 16x,y; + 3xs5y3 = 16xpy, - X1¥s + 12x,y;
- 12%,y; - 12%3y, + 12x5y,)

then
%ﬁ = { ¥2 (L2uy + b4us - Lléug) + yg (- 3u; -us + 4ug)

tys (- buy + 30y + wg) + yg (16u, - 12u; - bug) } /D

+ { YS (- l-1]_ B 31.15 i Aus) + }’z. (Z“ul ‘16U6 + 12u5)

+¥s (-3uy + 3ug + 12us - 12u) + y5 (- buy - 12u5 + 16u,)} /E

+4 s (- 4us - 12u; + 16u,) + y3 (- Buy + 3us - 12u, + 12uy)

+ Yy, (bup - 16Uy + 12ug) + y5 (- buy - uy - 3ug) } /F

(Just in case you are worried about the absence of X¢'s and y,;’s in the numerator
this is because, without loss of generality, they have been set to zero).

From this formula it is then quite straightforward to deduce that the
only way the derivatives can be set to zero independently of {x,, X, X3, X,, Xs,
Xe» Y1» Y25 Y3, Yur Y5, Ye) is 1f uy = uy; = u3 = u, = us = ug. This is then just

horizontal movement and is quite allowable.



Six-noded Quadratic Triangle and the Mid-Edge Rule

Again with x; = y; =0 let

D = 6(- 2xgy; + X5y3 + 2X3¥s - Xa¥s5 + 2Xp¥3 - 2X,Y3 - 2X3Yp + 2XK3y,)
E = 6(- 2xs5y, + Xsy3 + 2X,¥5 - X3¥s - 2XgYs - 2Xs¥, + 2X,¥5 + 2Xs5¥g)
F o= 6(2%gy; + 2Xs5y; - Xs¥3 - 2X5¥s - 2X3¥g + X3¥s

+ Xp¥3 - 2X,y3 - 2Xg¥, + 2XgY, - 2XgYs - 2XsY,

+ 2%,¥5 + 2%s5Yg) .

We can then write g_;: as

It

& {y,, (- 2uy; + 2ug) + ys5 (u; - uz) + yg (- 2u; + 2uy)

+ ¥y (uy +us - 2ug - 2u, + 2u) + ¥, (2uy + 2ug) } /D

+ { 2y, (uy - ug) +y3 (us - uy) + 2y, (ug - us)

Fys (- up - oup b 20, + 20, - 2ug) + yg (2us - 2up) }/E

+ {2y, (us - w) 4 vy (-oup - ous o+ 2ug - 2up + 2up) + 2y, (U - us)

+ys (U + ug - 2uy, + 2u, - 2ug) + 2y5 (us - uj) }/F

It is now quite clear that to make this derivative zero we must have
u; = Uy = us and a little deduction then reveals that we must have u; = u, = u,

= u, = us; = Ug as we would hope.
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Ten-noded Cubic Triangle with Centroid Quadrature

The transformation of the general 10-noded cubic triangle on to the
standard triangle is defined by:

t = -% (3p+3q-2) (3p+3q-1) (p+q-1)t
9
+ 5P Gp+3q-2) (p+rtqg-1)t

Bp -1) (p+q-1) t3+% (3p -1) 3p - 2) t,

[

9
Ppq (3p - 1) t5 + 5 P4 (3q - 1) t4

+4q 33 -1 Ga -2t - 2qBqg-1) (p+q-1) ¢

-+

24 Gp+3q-2) (praq-1) - 27pq (p+q-1) gy
Define
D =2 (- x5y - 3%;y5 + 3%;5, + Xyy, - 3%;¥s + 3%,y

- 3X1¥s + 9%p¥s - 9Xg¥s + 3X.Ys - 3%Ye - XYy

- 3%syp - 9%sys + 9Xsy, - 9Ksys + 9IXsyg + 3xsy,

+ 9%gys + IXgys - 3Xgy; + 3Xy¥s - X1y, + 3%;¥s

+ 3%gy1 + I%eY; - 9%ey, - 3XeYs + IXgYs - IXgY

- 9%py3 + 3%,y - 9%Xp¥s + 3Ry, + 9%gys - 9Rgy,

- 3XgYs t+ 9I%gys - 9Rg¥g - 9IXgys + 3Xgy, - 9XgYs

- 3%yyg - 3%3y; + 9%ay, + 9x,y¥s + 3Xzy; + 9Xa¥g

- 9%3¥s + XiX; - 3%Xpy; + Xy, + 3%,¥s - 3%,¥3).
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Then
aX= { (3}'2 U 3}’9) (-u7 - 3U‘3 - 31.15 + 31.15 + u, + 3118)

+ ¥y - 3¥s - 3ys + 3¥s - ¥y + 3ye) (- uy + 3ug + uy + 3ug - 3ug - 3up)}/D

Unfortunately there are many spurious ways of making this zero, eg:

u u
Us = Ug = 9 us = ug = 9
Yy Uy
u u
Ug = Uz = 2 Uug = uy = 2
Ug Ug

There are so many spurious modes it doesn't seem worthwhile

listing any more.
Another problem is the lack of any appearance of u;; and indeed

X1 and y,;. This means we have a mode

That is not a deforming mode as such but would certainly cause problems if (x,,,

¥10) tried to leave the triangle.

Ten-noded Cubic Triangle with Vertex Quadrature

Define

D = 6(99%3y, + 162x%gy, + 198x,y, - 22x,y; + 18%xgy, - 324xgy,

198x,y, + 99x;y5 + 36%,yg - 18%x,ys - 198x,yg + 36%,Yy;

+

22X1}74 = 99)(1}73 = 162)(3}79 + 324}(2}79 - 22x1Y7

162x,y5 + 4x,y; - 18x3y; + 81lx;ygs + 198xgy, - 36X%gy,

+

162xgy; + 22%;y;, - 36%;y, - 4x%,y, + 18x,y5 - 99%xgy,

1

81xgy;y)
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E = 6(36x3y; + 162x5y, + 18x,y, - 22x,y, + 198x,y,

81xqy, - 18x,y; + 36x,y5 + 99x,yg - 198x,y,
- 18xyy9 + 99%,y; + 22x,y, - 36%x,y; - 162x,y4
+ 81lx,yg - 22%,y; - 162x,yg + 121x,y, - 198x3y,
+ 324%3yy + 18xgy; - 99%xgy, + 102xgy; + 22x,y,

- 99%,y, - 121x;y, + 198%x;y; - 36%gy; - 324%gy3)

F = - 6(36x;y; + 162xgy, + 18x1y, + 4x,y; - 8lxgy, - 18x,y,
+ 36x,yg - 18x,y4 - 4x1y, - 36X,y; - 162%3y4 + 81lx,y,
+ 4x,y; - 162%,y5 - 4x,y; - 324%3y5 + 162x%,y5
- 36%3y, + 324%xyyg + 18xgy; + 162xgys - 4%,y

+ 4%;y, - 36Xgy; - 324%Xgy; + 162xgys - 18xgy,
+ 18x,y, - 8lxgys - 324x%sys - 18x,;y5 - 18xgy,

+ 36x5y, + 162x5yy - 36x%;y5 + 36X,y + 18x,yg
+ 162x,y¢ - 8lx,ys - 162xgys + 324x,ys + 36%5y,
+ 324xgy, - 243xgys - 36%xgy; - 162xgy, + 54%gy,
- 162x5y5 + 243%x5ys + 18x5y; + 81lxgy, - 54xsy,

+ 36%x,y; + 18x,ys - 36x,ys - 18x,y, + 8lxgyg

We can now write

g—: = { y1 (22u; - 99ug + 198ug + 99u; - 198u, - 22u,)
+ ¥, (162ug - 36u; - 324ug + 198u;) + yz(- 8lug + 18u, + 162uy - 99u;)
+y, (18ug - 4u; - 36ug + 22u;) + y; (- 18uy - 22u; + 4y, + 36u,)
+ yg (- 18u, + 8luy + 99u; - 162u;) + yg (- 162u; - 198u, + 36u,

+ 326u,) } /D

+{ y1 (224, - bu, - 36ug + 18us) + v, (162ug - 99u, - 8luy + 18u,)
+ y3 (- 324ug + 198u; + 162uy - 36u;) + y, (198ug - 121u, - 99y,

+ 22u,)
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+ y; (- 22uqy + 22u, - 198ug + 198ug - 99%us + 99uy)
+ yg (- 36u, + 36u; + 324uy - 324ug + 162us; - 162uy)

+ye (- 18u; + 18u, - 162ug + 162ug - 8lus + 8lug) } /E

+ { yy (4uy - 22u, - 18ug + 36us) + y, (- 162u; + 8lu, + 99u, - 18uy)
+ y3 (- 198y, + 324u; - 162u, + 36uy) + vy, (- 4u; + 4u; - 18u, + 36u,
+ 18ug - 36uy)
+ ys (198u, - 54u; - 486uy + 243u, - 8lug + 18u, + 162u;)
+ yg (- 994, + 54u, + 486uy - 243u,; + 162ug - 36u; - 324ug) + yy
(- 36uy - 4u; + 22y, + 18uy,)
+ yg (- 324uy - 36u; + 162u,; - 162ug + 36u,; + 324uy)

+ Yo (162u; + 18uy - 8lu, - 18u, + 8lug - 162us) } /F

Firstly we notice that u,, does not appear in this derivative and
therefore possibly renders the scheme useless.

The derivative can be made zero in the following

uy u, Us u, Usg Ug u; Ug Ug Ui
1 I 1 1 1 il il 1 1 1 1 _
2 I 27/13  27/13 27713 27/13 1 0™ S8 i 1 !
3 I 449 449 449 449 1 - -14 =1 1 - |[
| 260 260 260 260 20 13 20 |

4 { 0 0 0 0 0 0 0 0 0 1

The first is the only physical mode.
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Ten-noded Cubic Triangle and the Mid-Edge Rule

Define

D= 6 (- 18xgy, - 486xgy, + 18xgy; + 9xgy, + 243%gy, - 243%xgy;
- 9%gy, + 8xyy, + 216%;y, - 216%,y5; - 8%x;y; - 36%,y,
+ 486xgy; - 18xgy, - 486%gy, + 486%gy; - 1458x%4,ys
= IXyy, + 243xsy, + 18%xgy; + 54%,0y, + 1458x%,,y,
- S4xy0y, + 18x,yg + 36%,y, + 18x,yg + 9%, y3 + 9%y,
- 243%5y3 - 9%sy1 t Xy, - 9KYo - 8RY; - 54X.Yy
- 9x,ys - Xy t+ 486x,y5 - 243x,yg - 486x%,y5 - 216%,y,
- 1458x%,y,0 + 1215%,y; - 243%,y5 + 9%,y, + 243x,y4
+ 216x3y; - 1215%x,3y, - 486X3yg + 1458%yy o + 36X,y;
- 486%y3yg - 18x3yg + Ixyyg + 54%1yyy - 36x1y; + 9%55

+ 243%x3y5 + 8x,y; - 9%y, - 18x,yg)

E = -6 (1215xgyg - 21l6xgy, - 243%gy, - 36%xgy; + 216xgy,
- 1215%gyg + 9%gy; + 36%qy; - 243xrgyg + 243xgY,
- 1458%x0yg + 1458x%40ys - 9xgy; + 243xgy, - 54%y0Y,
- 4B86xgy; + 18xsy; + 486Xsyq - 486%X5ys - 9IxXgy;
+ 8%;y, + 9%;y, - 18x;y; + X;y, + 486%gys - 1458x,y4
- 243%gys - 18x;y5 + 54%;y.0 + 9%,ys - 36%,y4
- 9R;yg - 486x%gys + 486xgy; + 9Rgy; + S54x.yYy;
+ 216x,y5 - 18xsy; - 8xyy, - 216%,y9 - 8x,y; + 8x,y;
+ 243%x,y5 - 243%,y4 + 1458Rgy., + 243xg4yg - 9%,V
+ 9x,y; + 486X3y9 + 18x3y; - 18xyy; - 486%,y,
+ 36x1yg + 9x;yg - 54x;y,y + 18xyy5 + 18x.y5 - X,y

- 9%y, - 9%1Y6)



F -
+
+
+
+
+
+
We can
it
ax

15
6 (9%gy, - 18xgy, - 9%xgy; + 18xXgy; + 486Xgyg - 243X%gys
9%xpy; - 54xy0y; + 36x%sy; - 486x%X5yg + 243x5y,
1215%4ys - 1458%xqyqo - 1458x,9ys + 1458x%,0ys + %X5%,
1215x5ys + 1458xsyq, - 18x;y, + 9%,y3 + 8%y,
18x,y, - 243xgys + 243%gyg - 36%;y5 + 54%;y4q
9%,y - 18x,yq + 9x;y5 + 486Xqys - 36%gy,
486%gy, - 243%gy; + 9%3y, - 486%sy, - 216%,y,
54x10y, - 9Xys + 18x,y, + 36%,yg - 9x,y3; - 9IXsy,

243%g5y, + 216xgy, + 8xyy, + 18x,yq - X,¥7 - 54X,y
9x,ys - 8x,y, - 486xgyg - 486%x,y5 + 18x%,y;, + 486x,y5

9%y, + 243x3y5 - 216x,y5 - 243%x,y5 - 8x,y; + 216%,y¢)

now write the derivative as
¥y (-18ug + u; + 9us - 9uy; + S4uy; - 18ug + 36u, + 8u; + 9uy)

8
(ys + 6y.9 - 2yg + 5 y; + ¥g - 2yg) (9u; + 243uy - 243u, - 9u,)

ys (- 36u; + 1215u, + 9u, - 243u, - 1458u;, + 486us - 216u,
- 243ug + 486uy)

y, (- 9u, - 1215u, + 36u, + 243us + 1458u,, - 486u, + 216u,
+ 243u, - 486uy)

v, (36us + 9u, - u, - 9us - Shuj, + 18ug - 8u, - Juy - lSuB)} /D

v, (18uy - 9u, - 8u, + 18us - 54y, - 9ug - u; + 9ug + 36uy)

8
+ (y, - 2y, +§ Yy - 2y5 + yg + 6y19) (9uy - 9u, - 243ugy + 243uy)

y; (S4uyy + u; - 18uy + 9u, + 8u, - 9ug + 9ug - 18ug - 36uy)

yg (- 36u; + 486uy - 243u, - 216u, + 486us + 9u, - 1458uy,
- 243ug + 1215uy)

Yo (- 486us - 9u, - 486u; + 243u, + 216u, + 36u, + 1458u,
- 1215U, + 243U6)} JE
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8
+{ (g¥1 - 2y2 + ¥3 + ¥s - 2¥e + 6y10) (9w, - 243us - 9u; + 243ug)
+ ¥y, (- 9ug - 8u; + 9ug - Juy - Sbuyy + 36ug + 18u, - u; + 18uy)

+ ys (243ug + 216u; + 243u, - 486u, - 9u, - 486ug - 1215y,
+ 36u, + 1458u,,)

+ ys (- 243ug - 216u; - 243u, + 486u, - 36u, + 486uy + 9u,

+y; (Shug + 8uy + 9uy - 18u, + u, + 9uy - Yug - 36us - 18u9)} JF

Firstly we notice that u,; does take an active part in this

expression and so cannot just float around. The derivative can be zero when:-

—

! | u, u, U, u, Us g u, Uy u9 Uy

1 1 1 1 1 1 1 1 1 1L 1

2 9 9 9 9 -1 1 63 1 -1 -1

3115 -7 17 21 13 1 -89 -1 1 -1
5 5 5

4 | -1 i 3 -39 3 1 =rl: -1 -1 1
5 5 5

Again just the first is physical.
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Ten-noded Quadratic Tetrahedron

Just for fun consider the 10-noded quadratic tetrahedron.

~d

2 f— e —— 3¢
%
(o)

q
5 2 P
4
8 4 x 10
\\ r
2 1 X P
1 5 2

[
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The transformation is given by:-

t= (2p+29q+2r -1) (p+q+1r - 1)t + p(2p - 1)t,
+q(2q - Dty +r (2r - 1)t, - 4p(p+q+1r - 1)ts
+ 4pqtg - 4q(p + @ + 1 - 1)t; - 4r(p + g+ 1 - 1)ty

+ 4qrtg + 4pr th‘

The algebra for this problem is even more tedious than that we have gone

through before so just the results will be quoted.

Centroid:- The conditions for a zero derivative are
b7 = Ugg

There are 10 variables, 3 constraints plus the one physical mode leaves 6
spurious modes. Including the y-velocity and z-velocities as well means that 18

out of 30 modes are spurious.

Vertex and Mid-face Rule:- Both these quadratures just have the one zero,
derivative mode U = Uy = ... = Uy.
SUMMARY

Given the disgraceful behaviour of the cubic element using centroid
quadrature and it's not much better behaviour with vertex and mid-edge quadrature
we are left with the 6-noded quadratic triangle. Since the vertex integrated
version of this element, although perhaps better, is more expensive our first

choice will be the centroid integrated 6-noded quadratic triangle.
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We will now look at this element in a little more detail.

We shall now give a geometric interpretation of the velocity space for
the centroid integrated 6-noded quadratic. This is equivalent to some of the
work done by Flanagan & Belytechko (1981) for the quadrilateral bilinears.

Firstly we note that we shall only look at the u-velocities, the v-
velocities being entirely similar.

The vector space is spanned by the following vectors:-

A = (1,1,1,1,1,1,)
B = (1,-1,1,-1,1,-1,)
C = (-5,%,4,-1%,1,1)
D = (2,-3/2,4,%,-6,1)
E = (1,8,1,-4,-2,-4)
F = (1,0,-1,-4,0,4)

A,B,C & D, A quite justifiably, produce no restoring forces.
E and F produce restoring forces. We will not bother to draw A. We will also

take liberties with the scaling in some of the others.
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We can now write the original velocity components in terms of the new

velocity basis functions.

w = A + B - 40C + _4D + _E_ + _F
6 6 357 119 102 34
uy - A - B + _2¢ - _3D + 4E
6 6 357 119 51
uy = A + B + 326 + 8 + _E - _F
6 6 57 19 102 34
wu, = A - B - 10 + D - 2E - 2F
6 6 357 119 51 17
us, = A + B + _8 - 12D - _E
6 6 357 119 51
uy = A - B + 8¢ + _2Db - 2E + 2F
6 6 357 119 51 17

We can also express the element basis functions in terms of A,B etc.

4, = ¢A +¢ (- 8q - 8p + 8p? + 8pq + 8q? + 1) B,
+ 5%; (18q - 3p2 - 30pq + 12p - 12q% - 5) C;
+ I%g(Zq + 9p% + 6pq - 8p - 6q% + 1) D,
2 io_lz (- 17q - 28p% - 28pq + 28p + 14q2 + 1) E,

+ %Z(l3q - 28pq - 2p - 1l4q% +1) F,
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3. MESH LOCKING

From talking to people who know far more about Free-Lagrangian methods
than myself, see acknowledgements, I have gained the impression that meshes
composed of linear triangles are regarded as too "stiff". Using stiffness in
this context with finite elements can lead to ambiguity so we will rephrase the
statement to meshes composed of linear triangles have a tendency to lock up in
that the nodes refuse to move. Meshes composed of bilinear quadrilaterals don't
in normal use. Both types of elements have 6 wanted degrees of freedom. The
quadrilateral also has 2 unwanted degrees of freedom which we then do our utmost
to remove. If this removal is done ’'properly’ the mesh remains unlocked, if we

are over-zealous in our removal the mesh may lock.

Certain things are clear:- locking has nothing to do with the degrees
of freedom of the nodes as this is the same for both types of element. It would
therefore seem logical to look at the degrees of freedom of the elements. Also,
perhaps rather obviously, there is little point looking at one element in
isolation. A patch test has therefore been devised. The name has been chosen to

deliberately mislead people who use non-conforming elements.

I freely admit that the following arguments lack a certain something,
namely rigour. However, the predictions of the "theory" do seem to fit the facts

and if the assumptions are not reasonable they are at least not unreasonable.

One conjecture necessary for this "theory" to work is that we will assume
the existence of fractional degrees of freedom. However, having once calculated
an element to have a fractional degree of freedom we then assume that only the
integer part means anything. Hence if we calculate an element to have 1% degrees
of freedom it is actually no freer than an element with just the 1 degree of
freedom. More importantly an element with 3/4 of a degree of freedom is no freer

than an element with no degrees of freedom at all.

Another assumption, implicitly assumed here, is that pressure is taken to
be represented by piecewise constants. If a higher order representation of
pressure is used, see Crowley (1985) for example, there will be an increase in

the freedom of the system,
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Consider three nodes forming a linear triangular element. Each node has
2 degrees of freedom but this does not mean that the element has 6 degrees of
freedom because the nodes also belong to other triangles. Typically a node
belongs to 6 triangles and can therefore contribute 2/6 degrees of freedom to
each element. Each element has 3 such nodes and hence has 1 degree of freedom.

A bilinear quadrilateral node has 2 degrees of freedom shared between 4
quadrilaterals, 2/4 degrees of freedom per element. Each element has 4 such
nodes and so the element has 2 degrees of freedom.

This would seem to imply that quadrilaterals are freer than their
triangular counterparts. The analysis becomes more interesting when we consider
a patch near a boundary.

Numbers in the centres of elements denote the degrees of freedom for that
element. The nodal numbers are the degrees of freedom that node
contributes to that element which as before is

degrees of freedom of node
number of elements sharing

Quadrilaterals

AUV AN Y AN
Il 0/1 1/2 1/2 1/2
- :

H 1/2 2/6 | 2/4 2/4

:é 1/2 2/4 2/4 2/4

z z

X 1/2 2/4 | 274 2/4 |

At the boundary we impose a boundary condition on the node reducing its
degrees of freedom to 1. However, it only shares this with 2 elements and so the

element number remains the same. The corner element, though, loses more degrees
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of freedom and as a result the degrees of freedom of the element is reduced.

However, it is still greater than 1 and so the mesh should still be unlocked.
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The corner elements have less than 1 degree of freedom. They become

stuck. They now act like the boundary, ie we now have a domain

Blocks A and C then become stuck - ad nauseum.

So good so far. Now what about the sticking of the quadrilaterals when

the damping of the spurious mode is performed too enthusiastically.
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Suppose we wish to damp the two undesired modes by a factor a. If we
assume a damping as in Margolin and Pyun (1987) then total damping occurs for
a = %. Therefore we can argue that if we wish to reduce the degrees of
freedom of the element by 2 in this total damping situation then a damping by
a factor a leads to a reduction of 8a degrees of freedom to the element.
(The value of 8 is a negotiable number but will do to illustrate the point.)

This then means that the corner element has 1% - 8a degrees of freedom.

Therefore if a>_1 the bilinear quadrilateral mesh would lock.
16

Given that the suggested range is
0.01 < @ <0.05

an upper limit of 0.0625 seems as though it might be quite reasonable,

Six-noded Triangle

In an interior triangle

2/2 % 2/2

2/6 2/2 2/6

we get 4 degrees of freedom per element. At the corner this just gets
reduced to 3% . This would mean that the vertex integrated quadratic would
never lock, whilst in the case of the centroid integrated quadratic we may
get locking because of the number of spurious modes that need to be damped.
If we fully damp the spurious modes on the centroid integrated quadratic

triangle it has no more degrees of freedom than the linear triangle had.
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Remarks

These element degrees of freedom come entirely from the topology of the
grid. Whilst some error may have been made in transferring degrees of
freedom from nodes to elements and back again it is relatively unimportant
whether we use 4a, 8a or l6a to detract from the degrees of freedom of an
element. This does not alter the argument, just the critical value of a.

What is of more concern is the lack of any equation. Perhaps then some
trivial equation has implicitly been assumed here and the question of mesh
locking been reduced purely to the topology of the mesh. The question is
then, in practice will meshes lock harder or more easily than predicted here?

Hopefully they would be harder to lock.

4, CONCLUSIONS

It would seem that if a one point evaluation method is required then we
should recommend the centroid integrated six-noded quadratic. With very
careful damping of the spurious modes it should be possible to keep the mesh
unlocked. With the more expensive vertex quadrature this would not be a
problem because there are no spurious modes.

There seem to be a number of difficulties in using quadratic triangles.

Spurious modes are much more excitable on the triangles than they would
appear to be on the bilinears. For the test problem we tried here, that of a
piston moving into a gas at rest, which is essentially one-dimensional, the
cause of the presence of the spurious mode and the reason why it does not get

stimulated in the bilinears is easy to see.
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4 3
I
l
| Spurious mode is (1, -1, 1, -1)
1! 2
Now wu; = u, and u; = u;) hence
(ulruz,uS;uh) . (11 _11 ]-’ _l) = 0'

This means that there is no spurious mode present if u is constant in y.
Another point to note is that the bilinear elements are uniform in y as

opposed to

6 4 One spurious mode is (1, -1, 1, -1, 1, -1)

U, = ug and uy; = uy, = us hence
(uy, vy, ug, u,, ug, ug). (1, -1, 1, -1, 1, -1) = u; - 2u, + u;.
This is not in general zero! The grid, although uniform, is no longer

basically on-dimensional itself and this too can lead to problems with the
generation of vertical velocities. Going back to the problem of the piston
moving into a gas at rest putting u; = u, = us = -1 and the other velocities
to zero as initial data we see that this spurious mode is already present
accounting for approximately 11% of the initial velocity vector. For the
initial data this can be overcome by putting u, = ug = - 3. Clearly this is
only a temporary solution and we will, in general, need to damp the spurious
mode much more vigorously than in the bilinear case. It also does nothing

for the other spurious modes.
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There seems to be a more important problem though. This involves
J N; dxdy
el

where the Ny (j =1,...,6) are the element basis functions. This arises from

the equations for updating the velocities:-

Vi I p® Ny dxdy = p° I 9Ny dxdy
ox
el el

We have assumed here, without loss of generality that the pressure and
density are element constants p° and p°.

This integral is interpreted as contributing to the nodal mass of node
j. The actual nodel mass is then just the sum of these contributions from
all elements with node j as a node.

The mass associated with a node ought to be positive. With quadratic Nj
this cannot be got. The integrals may well be negative and even on a
regular, uniform mesh all nodes that are vertices of triangles will receive a
zero mass contribution. From a programming angle this is even worse than the
mass being negative as it leads to accelerations that are very large and
totally dominated by rounding error.

It would seem then that apart from spurious modes and problems of
stiffness an ever more basic requirement of the elements to be used in these

codes is that

N ; dxdy > 0 V,, V elements,
el
We note that linears on triangles and bilinears on quadrilaterals do

possess this property! We also note that the vertex integrated version, with

no spurious modes, failed in the same way although fractionally later.
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What of the future? All classical high order finite elements are going
to suffer the same fate because of their polynomial nature. What perhaps may
be a possibility is to use a high-order polynomial that is limited to being
monotone by restrictions being placed upon its derivatives, see Fritsch and
Carlson (1980) for a discussion of monotonic cubic interpolation. Perhaps
there is a finite element equivalent.

Supposing it was decided to use the 6-noded quadratic triangle with
vertex quadrature. This overcomes the spurious mode and locking problems.
Given that we are using quadratic elements it seems a shame to throw away all
this information by lumping the mass matrix, especially as how the mass
lumping leads to even more problems of its own. The argument against the
full mass matrix is the cost of inversion. However, since we are not
primarily using quadratics to increase the accuracy we could reduce the
number of elements used in the calculation. Secondly the sparse, symmetric
highly structured nature of the mass matrix make its inversion by conjugate
gradients very efficient. The whole inversion process is also highly
parallelizable.

The use of 6-noded quadratic triangular elements with vertex integration
and the use of the full mass matrix would seem to be the most promising

avenue to explore further.
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