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Abstract

The conditions for the existence of a unique solution of the
matrix equation AXB - CXD = E is proved to be (i) the pencils (A-AC)
and (D-AB) are regular, and (ii) the spectra of the pencils have an
empty intersection. A numerical algorithm for its solution is
proposed. The possibility of a least square type solution is briefly

discussed.

The set of equations (YA-DZ, YC-BZ)} = (E,F) 1is proved to be
equivalent to the afore-mentioned equation, and its solution is also

investigated. A numerical algorithm is proposed.
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1. Introduction.
. . . mxn
We consider the matrix equation for X € R ;

AXB - CXD = E (1)

where A,C € Izmxm and D,B € }ann
Equation (1) is a special case of the general linear equation

of X
P
) A.XB, = E . (2)
. im7i
i=1
By using the Kronecker tensor product, equation (2) (and thus (1))
can be written as

p
{ Y (A®BNIvIX) = v(E) , (3)
i=1 ¢

where v(X) = (xI,x;,...,x;)T , with xI the i-th rows of X
Equation (3) is now a simple set of linear simultaneous equations, with
mn equations in mn unknowns. The solvability of equations (1) and
(2) can then be investigated through looking at equation (3). In (81,
it was done for the special case p = 1 . For p > 1 , the matrix in
equation (3) has too complicated a structure and no general result for
the solvability problem is available. Also, solving equations (1) and
(2) in the form of equation (3) using the usual Gaussian Elimination
technique fails to take account of the matrix structure and requires
0(m®n®) flops. The operation count is obviously unacceptable when
m = n

In [4], equation (1) has been solved directly by transforming (A,C)
to upper-triangular-Hessenberg form and (D,B) to upper-triangular-Schur
form. (See section 4 for more details.) The operation caount is

0(m®) + 0(n?®) flops. However, no condition for the solvability of



equation (1) is presented and no test on the solvability is carried out
in the algorithm before the equation is solved. In additian, the
matrix pencils (A-AC) and (D-AB) are assumed to be regular, but no
test is carried out on (A-AC) . Note that a matrix pencil can be
regular, but nearly singular, especially when round-off errors are
taken into account.

In this paper, a set of necessary and sufficient conditions for
the existence and uniqueness of the solution of equation (1) is
presented. A stable numerical algorithm for the solution is proposed.
The algorithm is slightly less efficient than Epton’'s [4] in terms of
operation counts, especially when m >> n , but equations involving

singular pencils, non-existent or non-unique solutions will be

detected by the algorithm. Possibilities of solving equation (1) in the

least square sense is discussed briefly in section 5.
In section 6, equation (1) is proved to be equivalent to the set

of equations

YA -DZ = E

YC - BZ = F

and a stable numerical algorithm is proposed for the solution of
equation (19).

Note that the equation (1) is a generalization of the Sylvester
equation AX - XD = E , discussed by Bartels and Stewart [1], and
this paper is strongly influenced by their work.

The author came across eguations of the type in (1) when analysing
perturbation problems of the generalized eigenvalue problem [3].
Other applications of the equation (1) can be found in (4] and the

references therein.

(18)



2% The Solvability of Egquation (1).

Consider the generalized eigenvalue problem (3]1[5]107109]1(111(42]

Ax = ACx (4)

in the more sensible and convenient form

yAx = alx , (5)

with some normalization for x , e.g. "x“2= il = Note that the roles
of A and C are now symmetric and zero and infinite eigenvalues A
will now be treated similarly as [(a,y) = (0,y) or (a,0) . From

equations (4) and (5), one has

A= aly , (6)

with A = when vy =0
Consider a regular pencil (A-XC) . In general, there exists

unitary matrices P1 and P2 , through the QZ decomposition [7]1[11],

such that P,AP.%(a,.) and P,CP é(y..) are both lower triangular, with
12 ij 172 ij e

diagonal elements {aii} and {yii} respectively. The generalized

eigenvalues will then be (a,y) = (o..,yv,.) . Note that a,, = vy., =0

11 11 11 11

is impossible for any 1 , as it will indicate a singular pencil.
Similarly, there exists unitary matrices Q1 and Q2 such that

a [} 3 . ~
EJ,lDQ2 (dij] and Q1802 [Bij] are both upper triangular, with (D-AB) a
regular pencil. (c.f. [1]1.) We defined the spectra p(A,C) and

p(D,B) as the collections of f{ao,.,v.,) and (§ B..) respectively.

ii’'id 33’733
Use the usual equivalence relation = for quotients, where
(a,y) = (8,B) iff aB - y8§ = O . {(7)

From now on, we only consider the equivalence classes in p(A,C)

p(D,B)



Equation (1) has now been transformed to

H, H
P,AP,+P_XQ,+Q,B0, - P,CP

Hy oH _
] "PoX0,+Q,00, = P.EQ,

2

- AXB - CXD = E (%(e..)) . (8)
ij
ANOY - NOY- 0

Here, (-)H denotes the Hermitian.

Consider x.,. , the (i,j)-th component of X , row-wise, equation

1)
(8) can then be written in the form, with Aijkl denoting
(o 4Br1™Y13%K1?
Birar " X1 T Bqq
Blazz " %42 7 42 T Bqqqz t Xqq o
and for a general (i,j) ,
- ii1 ji1 -~
A,... « X,., = €., - (A, ., » X ) . (9)
iijj ij ij ko1 121 iklj k1l

It is obvious from equation (39) that equation (8), and thus (1), can be
solved for a unique X , if and only if Aiijj 20, VvV 1i,3 ;
< p(A,C) N p(D,B) = @

The above argument provides a solution process for equation (1) and

the motivation for the following theorem. The theorem can be proved

using a similar argument but a neater proof is provided.

Theorem 1. The matrix equation (1) has a unigque solution if and
and only if
(i) (A-AC) and (D-AB) are regular matrix pencils,
and (ii) p(A,C) N p(D,B) =@ . (Recall the equivalence

classes defined by equation (7).)



(Proof) Consider the equations

i
m

(A1A-A2C]XB . CX(A1D—AZB)

and

]
|
n

E]

[A1A—A2C]XD N AX(XqD—AZB]

for some real A1 and AZ which are not both zero.

One of the equations in (10) is equivalent to equation (1].
(c.f. [4]1.)

If the conditions (i) and (ii) are satisfied, Ai’s can be found
so that the matrices involving the Ai's are non-singular, thus solving
equation (10a) or (10b) is eqguivalent to solving an equivalent
Sylvester equation, which yields a unigue solution.

If any one of the conditions (i) and (ii) (or both) is (are)
violated, some Ai's can be found such that the matrices [A1A—A2C]
and (A1D—AZB] are singular. let y #0 and z 2 0 such that
[A1A-A2C]y = 0 and zH(A1D—AzB] =0 . Then CyzH , for any non-zero
constant c© , will be a non-trivial solution of the homogeneous

equation related to equation (10a) or (10b). As a result, a solution

cannot be unigue, if it exists at all.

Note that for the Sylvester equation, with B = Im and C = In :
the conditions in Theorem 1 reduces to p(A) N po(D) = 0@ . (See [11.)

Note also that the solution process through equation (8) is
equivalent to constructing X from the generalized eigensystems of
(A,C) and (D,B) . Any violation of conditions (i) and (ii) will

then be detected by inspecting the spectra po(A,C) and 0(0,B) ,

(10a)

(10b)



after the @QZ processes have been performed in egquation (8). Singular
or nearly singular matrix pencils can also be detected the same way.
Finally, even if the matrices B and C are non-singular and the

equation (1) can be transformed to the Sylvester eguation form

1

cl'ax - xo8 ! = ¢

e, (11)

one should not solve equation (1) in the form of equation (11).

Denote the equation (1), using the operator T , as

T(X)%AXB - CXD = E , (12)

it is easy to see that the conditioning of the solution of equation (1)
can be represented by the condition number «k(T) , while that of

T_1" for some norm.

equation (11) by k(T)-k(B)-k(C) , with x(T)&|T
Obviously, «(T) £ k(T)+x(B)ex(C) , with < replaceable by << if B

and (or) C are (is) ill-conditioned.

Note that «(T) behaves like (min]A, |]_1

144 (c.f. [91.)



S The Numerical Algorithm.
To avoid using complex arithmetic, the triangular-real-Schur forms
of (A,C) and (D,B) will be used in equation (8) instead. Let

A,B,C and D be partitioned as

511 B2 1q

i
]
[
]

" \_/
A A

21 22 22 # n o« Byy

11 94 Bz - 2 By

i
i

[@k!
(kK]

21 22 Dop = & By

C, €. waigsC D
p1 p2 PP \\_J;> ag

with E and X conformally partitioned. Denote

C.

(Aijxjkakl = €1 %5k Kl] by Tiltxjk] , eguation (8) can now be written as
i 3 1-1 3-1 i
TG = B L L T ), (13)
33 I k=1 1:1 M

with 1 = 1,...,p and j = 1,...,Q

Again, 1if iij are calculated in a row-wise fashion, (or column-
wise if preferred), the terms on the RHS of the equation (13) are all
known. Eguation (13) is then a linear equation involving components of

Xij and is at most 4 x 4 . It can be solved by the Kronecker tensor

product and Gaussian Elimination approach for each i and j , as in

eguation (3). (Equation (13) can of course be scalar.)



After the solution of equation (13) for all the 1 and j , one

can then retrieve X = P2XQ1, from X

The numerical algorithm can then be summarized as follows:-

Algorithm 2.

Step 1. Transform (A,C)

by the QZ algorithm to

lower-triangular-real-Schur form,

Stop if (A-AC)

Step 2. Transform (D,B)

is a (nearly) singular pencil.

by the QZ algorithm to

upper-triangular-real-Schur form.

Stop if (D-AB)

Step 3. Calculate the eigenvalues

is a (nearly) singular pencil.

(a,Y)

and (§,B)

and stop if condition (ii) is (nearly)

violated. Check min|a,

conditioning.

Step 4. Transform E to

Step 5. For i =1,...,p

~

row-wise for X..
1]

scalar system in

118357

and j =1,...

through the

equation (131}.

Step 6. Retrieve X = P2i01

The method should be numerically stable,

.. 0L,
ii73]3

| for

,Q ;3 solve

4 x 4 or

in view of the stable

numerical behaviour of the individual component algorithms used.

In addition, the stability and round-off error analysis in [6] can be

modified to cope with the above

algorithm.

The refinement idea [11[12] can easily be implemented.

Note that the tricks and remarks in [11,

(e.g. modifications for

symmetric matrices), mostly apply to the afore-mentioned Algorithm 2.



4. Operation Counts.

In this section, an operation count is presented for the
Algorithm 2. A count for Epton's method [4] is also presented as a
comparison.

In Epton's method, (D,B) 1is transformed to upper-triangular-
Schur-form (which is in general complex) and (A,C) to upper (lower)-
triangular-Hessenberg form. Using similar notations as in equation (8),

one can solve for xj , the Jj-th column of X , through

(sjjA-sjjc)ij = e, - 'z'[BijA—GijC];i .
i<j
j=1,...,n; where éj is the j-th column of é
The matrix [BjjA-ijC] is Hessenberg and equation (14) can be
solved efficiently. Note that the method relies on the strict-upper-
triangular features of D and B and some complex arithmetic is
unavoidable.

For a system (1) with N different right-hand-sides E , the

Algorithm 2 in section 3 requires approximately

c4 = 15(m3 +n3) « N.{18(m3+n%) + 4(mn%+nm?)} real flops,
with c, = (30+44N)n® , when m=n ,
and c, = (15+18N)m°® , when m >> n

c4 is obtained assuming that only 2 iterations are required for each
eigenvalue-block in the QZ algorithm in steps 1 and 2 of Algorithm 2,

and all the systems in equation (13) are 4 x 4

Similarly, for Epton's algorithm, one has

c, 2 5md + 1503 + 4nm? + N-{3§m3+18n3+9nm2+3mn2} real flops,
with c, = (24+33§N]n3 , when m=zn ,
and c, = (5+3§N)m ) , when m > n

(14)



Obviously, =¥ > Cy especially when m >> n . However, 1i1l1-
conditioning of eguation (1) can only be detached through the
LU-decompositions of the matrices (BjjA—ijC] in equation (14), and it
may well be after a lot of work has been done. Note that c, and c,
are dorminated by the transformations of the matrices A,B,C,0 and E
to various standard canonical forms.

As a conclusion, Epton's method should be used if one is sure about
the solvability and conditioning of the equation (1), especially when
m>>n . Otherwise, the method in section 3 should be preferred,
especilally when m = n . In addition, Cy will be less than c, if

(A,C) is already in lower-triangular-real-Schur form, e.g. when one

is also interested in the spectra of (A,C) and (D,B).



5. Least Square Solutions.

Consider the generalization of equation (1}, where
p(A,C} N p(D,B) # @ and the matrix pencils (A-AC)} and (D-AB) are
allowed to singular, or indeed rectangular. (See [5]1[10].) One can
then analyse the structures of (A,C) and (D,B) by using the

Van Dooren algorithm [10]1. In the transformed form, equation (1) can

then be written as

{(15)

AR 0 0 X BR B12 813 = CR 0 0| X DR D12
21 AI 0 0 BI B23 21 CI 0 0 DI
31 A32 AS 0 0 BS 31 C32 CS . D
= | B11 B2 Bg3
E21 22 E23
i E31 32 E33 |
with X similarly partitioned as E .
The suffices R and I represent the regular part of the matrix
pencils and S the singular part. The regular part is further divided

into two disjoint parts, with I denoting the part with intersecting

spectra.

Equation (15) can be broken up into

AR X11 BR CR x11 R 1 *
1 A X4z Br = Cg %42 Bp 12 7 Ar ®11 By T Cr X4 Dyg o
Ap Xpq Br = Cp X5 B = Eyy = Agy X4y B * Boy X4y B

(16)



_']2_

with "other equations” which cannot be solved by Algorithm 2 in the

usual non-least-square sense. qu,

algorithm 2, and substituted back into the "other equations”.

~

12,X21 can then be solved using

They

can then be written down in Kronecker tensor form and solved in the

least sguare sense, e.g. using the

~

be viable if the dimensions of ;

QR decomposition.

I"'s’'’I

The idea should

B and B i.e. the intersecting

Sl

and singular parts of the matrix pencils, are small.

Note that if the matrix pencils are regular, the only "other

equations” will be

MpkopPn - “r¥z20r
= E22 + terms involving X11 . X12 and X21 (17)
The "other equations” can be both under- and over-determined at
the same time, e.g. when [(A-AC) = g 1 0 , B =D =1 (scalar) ;
0 0 1
0 0 A
(A-AC) is purely singular and is in Kronecker canonical form [5].
Equation (1) is then equivalent to
X, ot X, =gy (18a)
X4 = e, {(18b)
= 1
Xq ©q {18c)

Obviously, equation (18a) is under-determined for X, and X5

equations (18b) and (18c) over-determined for x

with

3

Finally, an eigenvalue problem always has a parallel linear

system of equations, and it is interesting to see the way the

"singularity” in singular matrix pencils manifests itself through the

under- and over-determined set of linear equations in the form of

equation (1).



6. The Simultaneous Equations (YA-DBZ),YC-BZ) = (E,F).

In [9], Stewart introduced the operator T , where
TI(Y,2)14(YA-DZ,YC-BZ) = (E,F) , (19)

and proved that, for systems which satisfied condition (i) in

Theorem 1, T 1is invertible if and only if condition (ii) in Theorem 1
holds. (One can prove a slightly stronger result, as in Theorem 4
below.) Obviously, the operators in eguations (12) and (19) are
closely related.

Assuming that (A-XC) and (D-AB) are invertible for some

AP ER. Equation (19) can then be written as
Y = (D-AB)X + E - AF , (20a)
Z = X(A-xC) , (20b)
DXC - BXA = F + (AF-E)(A—AC)_1C : {20c)

Note that equation (20c) is in the form of equation (1) and Y
and Z can be evaluated through equations (20a) and (20b), after X
has been obtained by solving equation (20c). However, it will be
unwise, as the inversion of (A-AC} 1is involved.

Starting from equation (1), define
Y = (A-AC)X and Z = X(D-AB) . Equation (1) can easily be proved to

be of the form

(YB-CZ,YD-AZ) = [(E,XE) , (21)

which is in the form of equation (18). Again, solving eguation (1)
through equation (21) is not advisable as the inversion of the matrix
(A-AC) or (D-AB) 1is involved.

As a result, it is proved that the solutions of equations (1) and
(19) are equivalent for systems with a unique solution, (or satisfying

conditions in Theorem 1.)



We are now ready to prove the following theorem:-

Theorem 4.

(Proo¥)

The matrix equation (19) has a unigue solution if
and only if conditions (i) and (ii) of Theorem 1

are satisfied.

The "if" part has been proved by the above argument.

(It can also be proved by a similar argument as in

the proof of Theorem 1, after transforming equation (19)
into a Sylvester equation. See also [9]1.)

The "only if" part can be proved as follows:-

Consider the equation

Y[A1A—A2C] = [A1D-A2B]Z 7 A1E - AZF (22)

for some real A1 and Az which are not both zero.

Equation (22) can then replace one of the two eguations
in (19) and still leaves an equivalent set of equations.
If any one of the conditions (i) and (ii) (or both) is
(are) violated, the homogeneous equation related to

equation (22) will be satisfied by Y = y1yg and

H H

7 = 2,24 » with yz(qu—AZC] =0 and (A D—k28121 =0

1

for some chosen Ai's . Let the remaining equation be,
without loss of generality, YA - DZ = E , with its

related homogeneous equation satisfied by choosing

= - aH .
Y qu, and z, A Yoy - Thus a solution of

equation (19) cannot be unique, if it exists.



One can generalize the concepts of diff in [9] and related it to

||T—”| , for the operator T in equation (12).

A similar procedure as in Algorithm 2 for equation (19) is as

follows:

Algorithm 3.
Step 1. Transform (A,C) by the QZ algorithm to
upper-triangular-real-Schur form.

Stop if (A-AC) 1is a (nearly) singular pencil.

Step 2. Transform (D,B) by the QZ algorithm to
lower-triangular-real-Schur form.

Stop if (D-AB) 1s a (nearly) singular pencil.

Step 3. Calculate the eigenvalues (o,y) and (§,8) and
stop if condition (ii) is violated. Check

minla, .8 -y | for conditioning.

B, . c. 0L
iiv3j ii733

Step 4. Transform (E,F) to (E,F)

Step 5. Equation (19) is then equivalent to

s r = - J-1 s = izl & =
YijAjj ) Diizij ) Eij ' kzq Yik kj 121 Diy 15 *
- - - iEt o - i-1 . .
Yi3Py5 " Bisfiy T Fuy o qu YikBeg T L, Panfag
for 1 =1,...,p and j = 1,...,0
If ;ij and iij are calculated in a row-wise (column-wise, if

preferred) fashion, the RHS will contain only known qguantities and

one will have to solve an 8 x B or 2 x 2 system for each 1 and

for the components of Y,., and Z,,
1] 13

J



16 -
Step 6. Retrieve Y and Z from Y and Z

The above Algorithm 3 is obviously numerically stable.

Again, modifications for symmetric matrices are possible, as in
(1], to improve efficiency.

Finally, the equivalence between equations (1) and (18) breaks
down for systems involving non-unique solutions or singular matrix
pencils. The solution of such equations in the least square sense

is feasible, analogous to the techniques discussed in section 5.



17

7. Conclusiaons.

The necessary and sufficient conditions for the existence and
uniqueness of the solution of the matrix equation (1) is presented.
A stable numerical algorithm is proposed. An operation count is
given and compared to that of Epton’s method [41. The possibility of
solving a general rectangular system in the form of equation (1) in the

least square sense is briefly discussed.

The equation (1) is then proved to be equivalent to equation (19),
when a unique solution exists. A stable numerical algorithm for

the solution of equation (19} is proposed.

Finally, note that Theorem 1 and Algorithm 2 can be generalized

with ease for the equation

£ i(A]xFZi[B) + fai(C]XF4i(D) = C,

no~110
PN
no~10

if the functions Fij(M] preserve the triangular structure of the

matrix M (e.g. polynomials, exponential eM]. The conditions for the
q
solvability will then be (1) o@‘det ALA) ¢ ) Fo. (00| and
121 11 1 121 313
é%édet[ z f4i(A4D) + z F (A B w are not identically zero, and
i=1

(ii) o, n Py = @ , with

6 O 8
P, {(X1,A3] : 52 0} and Py 4
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