Two Dimensional Shock Recognition

and Roe's Scheme

M. J. Baines

Department of Mathematics, Unilversity of Reading
Numerical Analysis Report: 10/83

ABSTRACT

This report discusses shock recognition for two
dimensicnal conservation laws and a generalisation
of Rog's scheme for one dimensional systems which

concentrates onh shock capture.



Two Dimensional Shock Recognition and Roe's Scheme

§1,  Introduction

In Roe's scheme [1] for shocked flows in one space dimension, the so-

called fluctuation

$=F_ -F (1.1)

in an interval (L,R) , written in terms of the Roe matrix A(uR,uL]

(see.[1]1) as

FR - FL = A[uR,uL] (uR - uL] (1.2)
recognises a shock when it matches the jump condition

FR = FL N S(uR - uL) (1.3)

-~

i.e. when u_. - u is an eigenvector of A(u

R L .uLJ and S (the shock

R
speed) is the corresponding eigenvector. In the above L and R denote left
and right states of the interval, u 1is the dependent variable and F the

flux function for the hyperbolic system

u  +F_ =20 . (1.4)

By isolating the components of ¢ in the directions of the eigenvectors

of A[UR,UL] Roe's algorithm recognises each simple wave component of a’
shock wave exactly (to grid resolution), and is then able to advance values of
¢ in time in accordance with the appropriate upwind direction (given by the
sign of the corresponding eigenvalue).

In this report we seek a generalisation of the shock recognition aspect
of Roe's scheme in two dimensions. There are two new prablems arising from
the additional dimension. One is the estimation of the inclination of the
shockwave to the grid. The other is the generalisation of the algorithm

itself, in particular, the choice of a generalised Roe matrix.



§2, Rotated Fluxes

Consider the two dimensional scalar equation

u, +F +G =10, (2.1)
X y

t
where F and G are functions of u only. In order to discuss
discontinuities we consider inclinations of the co-ordinate system such that
the divergence of (F,G) comes entirely from a one-dimensional Jump.

In a new co-ordinate system (n,t) » rotated through an angle 6 with
respect to (x,y) , let (F,G) become (#G). Then if the divergence comes

entirely from a jump in the n direction we have

Fe ¢ Gy =‘3—n G, =0 . (2.2)
The second of these gives
, 3 P ]
- sin® — + cos®d — - sinBF + coseG| =0 , (2.3)
ax ay
which leads to
sin2eF - cosesine(F + G] + cos26G =0 . (2.4)
X y X y

If we can find a 6 for which this is satisfied then from (2.2) and (2.3)

E} = |cos8 LCH + sind = cosBF + sindG (2.5)
n ax ay
= cos26F + cosesine[F + G ] + sin26G (2.8)
X y X Yy
=F + G 5 (2.7)
X y

consistent with (2.2).

§3, Shock Angle

In general there are two distinct angles 6 which satisfy (2.4). To

understand these angles write

F = A(ulu G = B(ulu i (3.1}
X X y y
—.,c_j_,.:_ :'Elg-
where Alu) = 0 B(u) =

(3.2)



Then (2.4) becomes

sinZo A(u]u>< - cosesine[A(u]uy + B(u)ux] + cos2g H[U)Uy = 0 {3.3)

{
or sin® A(u) - cosé B[u]] lsine u, - cos9 uy] =0 ) (3.4)
which gives two solutions o and B , where

_ _ B(u) Yy
tana = A0 » tang = 3, o (3.5)

(=

c

The first of these is the local flow direction and reflects the fact that the
divergence comes from one term only in one-dimensional flow. The second is
the direction of the gradient of u , perpendicular to u = constant contour

lines.

§4. Systems Case

The above results hold for systems of the form

u +F +G6 =0 (4.1)
t X y

where u , F, G are N-vectors, except for the following. In (2.2],5,t =0

for only one component, in general, say i. A(u) and B(u) in (3.1) are

now matrices but (3.4) still holds for the component i leading to

(i)
uy
|B=-——-
tan 17T ’ (4.2)
u
X
(i} | .
where u is the ith component of u.

g;t # 0 for the remaining components, in general, but is given by the
left hand side of (2.4). Similarly E;n is not given by (2.7} but by (2.6).

Any component i leads to an angle given by (4.2): the choice of 1

is free but may perhaps pe made by considering which i 1leads to the greatest jump

as measured by E}ﬁll (suitably normalised).



wn
(G2

Discretisation

We discuss now a discretisation of these results (c.f. Baines 21]).
N

Fig. 1
For a square grid, diagonally orientated, as shown in fig. 1, a
discretised form of the (averaged) divergence comes from the integral

%2 fdiv(F,G)dQ
0

§(F’G]-d§ » (5.1)
af

cllJ_s

where d is the length of the diagonal of the cell. A discretised form of
(5.1) is obtained by using trapezium rule quadrature on the sides EN , NW,

WS, SE (fig. 1). The result is the expression

[FEW . GNSJ /d (5.2)

where FEw = FE - Fw R GNS = GN = GS ; this is an obvious discretisation of

the divergence F + G .
X y

Replacing derivatives by differences in 53 above we see that any

discontinuity will occur at an approximate angle B8 , where

tang = Uﬂg (5.3)
EW
and UNS = uN T Ug . uEw = uE N uw. This is for the scalar problem. For a

system we expect a discontinuity at an angle B , where B is one of the Bi given by
tanBi= _—, (5.4)

the choice of i being possibly that for which the discretised divergence



2, (1) 0 (1) (i) . D (i)
cos BFEW + cos0s5in6 FNS + Gew + sin eGNS (5.5)

is greatest (after normalisation). 1In practice the same angle may be expected

for each component, since any discontinuity here has a one-dimensional character.

§6. Jump Condition

Consider now the one-dimensional jump itself. From (2.8), (2.7),

Ef =F + G = cos’B F + cosBsinB(F  + G ) + sinB G (6.1)
N X y X y

with B given by (4.2). Using (3.1), (6.1) becomes

é} = (A(ulcosB + B(ul)sinB) (u cosB + u sinB)
n X \Y
. Ju
= (A{u)cosB + B[u151nB)§; . (6.2)

Hence in the scalar case the jump condition for a discontinuity moving in the

direction n is

[F.] - {Atulcos8 + B(u)sing) Bl (6.3)

and the shock speed is
S = AlulcosB + B(ulsinB . (6.4)

Convenient discretised forms of (6.3) and (6.4) are

F G
F 'm RL i
RL © 15— cosB + = sinB U = FRLcosB + GRLsinB (6.5)
RL RL
F G
and S = E—E cosB + URL sinB. (6.6)
RL RL

consistent with approximations (c.f. (6.1))

FEw =§}RLCDSB i GNS = RLsinB @ (6.7)
In the system case an equation of the form (6.1) holds for each component
of u . 1In order to discretise (6.2), however, we need a generalisation of the
discretisation of (3.1) to the system case.
In one dimension Roe [1 ] introduces the matrix A(UR,UL] , {see fig. 2),

with the central property

(6.8)

nl

A . . F_ -
[uE,uw] [uE qu }E W



each eigenvector of which propagates with the speed of the correspanding
eigenvalue and, whern shocked, is captured exactly. The existence of such matrices
has been discussed by Harten [2]. Correspondingly in the two-dimensional case

we study the matrix j%ﬁL with the property

N (6.9)

RL

Comparison with (6.2) shows that we should take

J R'RL = ARLCOSB + BRL51nB 3 {(6.10)

to be the appropriate Roe matrix in this case, where

A = F

RLYRL RL ' B

RLYRL = GRL . {(6.11)

Relations between u , u and u_ , u, 6, u, , u

R L £ are given in § 7.

7. The Algorithm

We now discuss the algorithm itself, beginning with a summary of Roe's

procedure in one dimension.

YL R
I .
L

Fig. 2

Having calculated ¢ from (1.1) (see fig. 2), the Roe algorithm for the scalar

case is
n+t _ n _ At >
R~ Y% ax? [ﬁQL 0]
(7.1)
n+1 n At [
= - A < 0
L YL B¢ RL
F
RL
where ARL = GE[ (7.2)

(c.f. (3.2)) and At , Ax are t » X steps (Ax = ()

For the system case we calculate first the eigenvectors ;j and

eigenvalues Aj of the Roe matrix Fel(see (6.9) , (6.10)). The

fluctuation ¢ 1is then decomposed into components ¢j in the diﬁections



é. Then for each j we apply (7.1) with ¢ replaced by ¢j and ARL
—J- .

replaced by Aj (8x is replaced by d). The point of this exercise is to

ensure that correct upwinding is applied for each simple wave. For the
two-dimensional case with the set-up shown in fig. 1, the same procedure can
be carried out for the two part-fluctuations

6 =F_ -F,, b =G, - G, , (7.3)

whose sum is ¢,
In the scalar case a useful property of such a procedure is that there

exists a maximum principle.

o
g B N—
N /
<
A N
Q@ Fig. 3

Thus, if 0 1is a point of the grid and AOP >0, BOQ >0 , the algorithm

gives

N+t _ gy - At - . At <

5 g 2 e - ) -2 (s, - o 0.4

. - At - At

Y% "3 ADP[UO UP] 3 BOP[UO UQ]

= - v -V v v

“0[1 oP 00] " “optp T Vogip - (7.5)
where Vv s At A v -t B . Provided that 0 < Vv 0 <V ’
oP d OP " 0Q d 0@ 0P’ 0oQ
n+1

vOP + vOQ <1, the coefficilents in (7.5) are non-negative and Up
lies between the minimum and maximum of u » Ug , u_: (n subscripts have

0 P

Q

been omitted).
For an obligue shock at a small angle to the (A,B) direction, however,
such a maximum principle will work against sharp shock resolution and it is a

poor design tool.



In the case of systems, if we are to recognise simple waves moving

perpendicularly into and out of the shock, we need to apply the algorithm to

the components of ¢

is

thRL

In the case of the two-dimensional Euler equations the eigenvectors of the matrix

-

are

\%

H

+

b

+

= A_, cosf + B

RL

sinR

RL

A cosB + B sinB

C cosp

c sing

clu cosB + v sinfg) |

8 .

c sinB

- c cos B

clu sinB - v cosB)J

in the usual notation, with corresponding eigenvalues

~
The eigenvalues and eigenvectors ofj%

H replaced by

U cosB+ v sinB *c

It remains to show how

and US'

linear interpolation gives

Un = i1
u = (1
g = 301
u = 301

. ™
sin B 7
sin B- 1]
sin B- =)

2
sin A- %P]

N

u, v , H where

u

YL

sin

sin

sin

sin

u cosB+ v sinB

RL

are to be calculated from

m

B- =) u ]

4 N )

= )

B" Z‘] US i
3w

B- 7r]uw ;

)

3 J

B- T]Uf 1

ge [o %]

Be[%.W]

(twice)

are the same as those with

along the eigenvectors of the appropriate Roe matrix, which

(7.6)

{(7.7)

(7.8)

(7.9)

Vo,

(7.10)

Assuming that the discontinuity passes through the centre of the cell,

{(7.11)



. . . 3
and the same expressions with uR . uL interchanged when Pe M
<

Be(%;,Zﬂ] » respectively.

u and B u u may be calculated and

Uy » Ys * Se1e S

Thus, given u_ , u

E W’

hence, using (7.10) and (7.8), (7.9) , the eigenvectors and eigenvalues of

~
jct. The two part-fluctuations ¢, - ¢, (see 7.3) are then projected onto these

eigenvectors and each component treated as in the scalar one-dimensional case with

wavespeed equal to the corresponding eigenvalue.

8. Conclusion

In this discussion we have concentrated on devising a Roe-like scheme which
recognises possible shocks in two dimensions. The scheme is first order accurate
although it can be made second order accurate using another technique due to
Roe [4].

Clearly a scheme which devotes itself to shock capturing will seem
cumbersome away from shocks. For this reason some way of deciding more definitely
whether a shock is likely to be present is desirable. One possibility is to compare
B's from adjacent cells, seeking linear continuity.

Since this report was prepared Davis [51 has described a rotationally biased
upwind difference scheme for the Euler equations in which he uses a rotated
coordinate system with one-dimensional Van Leer flux splitting to demonstrate that
steady oblique shocks can be modelled sharply. He obtains the shock angle by

reguiring that the shock is normal to the velocity jump.
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