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1. INTRODUCTICN

In 1871 Veryard [21] noted an improvement in the accuracy of
gradients of biquadratic Galerkin approximations which took place when
the gradients were sampled at the second order Gauss points in each element.
Since then such points of exceptional accuracy of derivatives of finite
element approximations have come to be Known as "stress points” and their
existence as an example of the phenomenon of "superconvergence”.

Strang and Fix [19] prophetically had this to say: "We believe that
the stress points can be located in the following way. The leading term
in the errors is governed by the problem of approximating polynomials P

of degree Kk (sic), in energy, by the trial functions in Sh --- Then

K

stress points are identified by the property that the true stresses
(derivatives of PK] coincide with their aepproximations (derivatives of a
lower-degree polynomial).” Also, in two dimensions, "exceptional points
for one stress component need not be exceptional for the others. The midpoints
of an edge seem to be likely to be exceptional for derivatives along the
edge but not for stresses in the direction of the normal”.

In a paper submitted in 1974 (published in 1976), Barlow [2] went
further in the case of rectangular elements. He noted that the gradient of
the interpolant, from a "serendipity” polynomial space incomplete in P4,
of any polynomial in P4 is matched exactly at the 2xZ Gauss points.
It was to be hoped that this would also apply to the gradient of the
Galerkin approximation and that this exact matching would significantly improve
the accuracy of the gradient (or in other words, that the error was indeed
dominated by approximations to elements of P4).

The first precise statement and complete proof of superconvergence
at Gauss points was given for the case of linear and quadratic serendipity

glements in up to three dimensions by Z1amal at the Rome conference in

1975 [23]. His work was later extended to cover curved isoparametric



elements of any degree, wlth various numerical gquadrature schemes

([24]3, [111). In all three papers, as in this report, the term
"sup;roonvergence” is associated with the sampling of gradients to an
average accuracy of O(th in cases where the global accuracy of first
derivatives is O(hk—1J. We note that two papers published in 1977

(L51, [20]) which discussed local averaging processes for boosting an
0(h") error in displacements and their derivatives to O(h2P_1] would
not result in an improvement for the common linear and bilinear elements.

Very little has been published on triangular elements: whether they
have stress points and if so where has been open to question. Moan [13 ]
claimed without proof that, as with quadrilateral elements, stress points
and Gauss points were one and the same. His intuitive argument was based
on the assumption that the Galerkin least-squares approximation to gradients
is "almost local” and can therefore be analysed in one element in complete
isolation from all others. Zienkiewicz [22] similarly presented as
"physically obvious” the eguivalence of Gauss points and optimal stress
sampling points in both guadrilaterals and triangles. It is now evident
that the reasoning of these last authors, though fortuitously successful
for quadrilaterals, assumes too much; the global nature of the Galerkin
approximation cannot be neglected. However, Barlow'’s more cautious approach
has survived; indeed it can be viewed as an introduction to Zléﬁal’s work.

We recall that Strang and Fix predicted tangential-derivative stress
points at the midpoints of element edges. (This result, applied to quadrilaterals,
holds in addition to those of Z1&mal.) 1In this report we show that the
prediction is good for linear elements on triangles. The question of whether
in some sense these midpoints are "optimal” sampling points is discussed.

In Section 3 we give a crucial bound on the normed difference of the
Galerkin and interpolating approximations to the solution of a model problem.

The derivation of this bound requires the combineation of error terms between

neighbouring elements in a manner not necessary when considering the
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corresponding problem on serendipity elements (i.e. rectangles).

Otherwise Swctions 3 and 4 (this latter completes the superconvergence
proof) closely follow Zlémal's work [23]1. In particular the bounds obtalned
are non-constructive (and clearly non-optimall.

Two key results from Sections 3 and 4 are reworked from an optimal
standpoint in Section 5. The method used does not appear in the literature.
It is based on Taylor expansions which directly exploit more smoothness
than those employed by Meinguet [12]; however the full smoothness available
is only used indirectly. Although our method is very successful here its
applicability to other problems may be limited.

We discuss the possibilities of pointwise (as opposed to "on average"]
superconvergence in Section 6; this is followed by a note on Moan's suggestion
for sampling at centroids. In Section 8 we consider extensions to the model
problem introduced in Section 3. Finally, we present some numerical evidence
and pose the question of where, however good or bad in somg average sense the
midpoints may be, it is "best” to sample the gradient of a finite element
solution on linear triangles.

Before we embark on the preliminary notation etc., we have two points
to note. The first is that separate components of a vector at different
places are usually not what is required, so that some averaging process
to recover both components at a single point must be devised (e.g. linear
interpolation). The other is that the error bounds that follow invoke
high order seminorms which will not in general be easy to calculate or
even approximate. Therefore it may well turn out that the most practical
results in this report are the numerical indications that, whatever the

magnitude of the error, the midpoint is "a priori” the best place to sample.



2. PRELIMINARIES

The results in this report are presented 1n the context of Sobolev
|
spaces. In this section we introduce the relevant notatlon and go on to
some lemmas which will be used later.
For any open region in R (n = 1 or 2), parametised here by R,
we denote by H"(R) the Saobolev space of functions which together with their

generalised derivatives up to order m inclusive are in LZ(RJ. The norm

in R?% is given by
i\
- 3 3 2 .
TR ES 0 N (6 () 2.1
a <

We will also use the seminorm

e <[] 2 G G
R i+j=m
In either case, if the subscript R is absent, integration is implicitly
over the domain @ in which the differential equation is posed. By (»,¢)
we denote the inner product in LZ[Q]. (@ is introduced in Section 3}.
The subspace HE(RJ of H™R) is formed by completing in the
H" - norm the set of infinitely differentiable functions with compact support
in R. It can loosely be thought of as the subspace of H™ whose members
vanish on oR.
Finally, the space of polynomials of degree less than k in R is

denoted by PK[R] (for example P_, is the space of quadratics).

3
In all that follows the letter € stands for a generic, positive
number, different at each appearance unless identified by a subscript,
"constant” in that it is independent of any functions in H"  (such as the
unknown u) and of the discretisation parameter h which will be introduced
below.
We require some results from the literature, in a simplified form
in that they need only apply to the triangle A with vertices (0,0), (1,0),
(1,1) eand the quadrilateral Q with vertices (0,0), (0,-1), (1,0), (1,1)
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rather than to "unit dlameter reglons satisfylng the ordinary cone condition”,

and in that they only refer to spaces based on the L2 norm in [R2. In the

following, R denotes elther of the regions { or A, 1ts boundary i1s 3R.
Lemma 1 (Taylor's theorem). Let x and y be [R2 vectors representing

points on a line T and let o denote a 2-index. (See, for example, [B]

or [17] for multi-index notatlon). If weH'(T) then

- 0‘ —
wix) = 2 w[a)[ ) iﬁaf} o 2 (x-y

1
[ W(aJ(x+s[y~x)Jsm_1 ds.
|a <m Ja|=m

0

Lemma 2 (Trace theorem) If weHm+1(R) then weH (3R).
(For a proof of the more general statement see [1]). As a corollary, if
the line I forms part of B8R and if W€Hm+1[R] then the result of Lemma 1

holds.

Lemma 3 (Sobolev's representation). Let x and y denote RZ vectors

and o denote a 2-index. Let B be an open ball in R anc ¢eC§[B) such

that [ (B ¢(yldy = 1. Define

1
ka[x,y] = %%l [x—y]u J ¢(x+s_1[y—xJ] s_ads.
’ 0

If weH™(R) then

wix) = 2 I f ¢ly) w[a](y] (x-y) dy + X [ [ ka[x,y]w[u](yldy.
B R

|a]<m o! Jaf=m

(This is a "smoothed” version of Taylor's theorem; for proof see [8] or [18]).

Lemma 4 ("Sobolev lemma”]). If weHZ(R) then max |w]| < CJ|W||2‘R.
{(For a proof of the more general statement from Sobolsi's representation see
[17] or [18]).

If weHZ(A) then since w is defined at each point in A we can define
the interpolant to w (denoted wI] as the linear functibn on A which
takes the same values as w at the vertices of A. Also 1f weH?(Q) where
2 1is any region which has been exactly subdivided into a union of triangles
we shall define the interpolant w to w to be the function which

I

interpolates w 1n each triangle (so that Wy is continuous and plecewise
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linear). We clearly have

Lemma 5 Let weH2(A) and let w, be its interpolant. Then

I
max |w_| = max |w| < max Jw| s c, |w]
I vertices A L 2l
of A
and |YWI| <2 mix |wI] < 2C1 Hw|[2’A .

Lemma 6 (Bramble-Hilbert). Let F be a linear functional on

H"(R) such that (i) |Fiw) | < Czilwllm,R YweH™(R) and
(ii) F(g) = 0 quPm(R].
Then [Fa | < ccy fwl | oo VYweH"(R)

for some constant C3 which depends only on R,
(For a complete proof of the more general statement see [7], [17] or both

[4] and [147).

3l AN ERROR BOUND

In this section we derive an error bound central to the superconvergence
proofs, restricting ourselves to the case of a model boundary-value problem.
The extension to a more practical class of problems will be discussed in
section 8.

We take § to be a square of side K in IR2, place (x,y) co-ordinate
axes parallel to the boundary 392 and consider approximations to the solution

u of the prablem

u=20 on aQ
(3.1)
- V2u =t in .
We will work with the weak form associated with this PDE, namely
ue H?](Q]
(3.2)

alu,v) = (f,v) chHg(QJ,



where we define

alu,v) = f [ Yu-w . (3.3)
Q

For each he{K/2, K/3, K/4,...} we caen partition @ into uniform
squares of side h and of the same orientation as Q@ and thence into

triangles by means of a diagonal of slope +1 in each square (see Fig. 1].

n

h

N

\4

é\/"""‘--_./ 9.()_

)
At

(Figure 1)

<
N\
N

We then define the finite element subspace SE c Hg(g) as. the space of
continuous functions cn © which vanish on 9Q and vary linearly in each

triangular element. We get a sequence of "finite element” (or "Galerkin”)

approximations to u with diminishing parameter h by

h
uh € SU
h (3.4)
a(uh,v) = (f,v) VVeSU 3

Also, for each h we define the interpolant u to u

I as the member

of SB which takes the same value as u at each node of the triangulization,
thus corresponding to the definition in Section 2. Note that this definition

implies a smoothness restriction on u additional to that in (3.2). We shall

in fact reguire
ue H%(.Q] . (3.5)

It is a standard result (see for example [6]) that

Iu-uhl,| < Iu—uII1 < Ch|u|2. (3.6)
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This rate of convergence is optimal for global L2 sampling of the
quantities u-uy and u-ug (see Section 9). 1In Sectlon 4 we will improvs

this order by sampling at stress polnts; the following theorem will be

central to the result.

Theorem 1 Let u; and Uy, be the interpolant and the Galerkin

approximation to u as defined above, where u satisfies (3.2) and (3.5).

Then
lu,~url, s C4h2|ul,. (3.7)
Proof Consider the guantity a(u—uI,v] for some veSB. We write
this as the sum f IQ 32-[u-uI] %% + J IQ 33 (U-UIJ %% and bound each

integral separately.
Write § = (U{Aj}) U [U{Bj}], where the Aj are pairs of adjacent
J J
triangles with a common edge parallel to the x-axis (there are 0(1/h2) such AjJ

and the Bj are the 0(1/h) single triangles left over on the boundary

9; none of the Aj or Bj intersect. (See Fig. 2).

(Figure 2) 1In this example the 12 pairs

Aj are shaded; there are 8

triangles Bj'

AY
‘ X
d (yeuy BV - D gy B 3 (ueuy 2V
Now [ f 3% (UTup) 55 ) f J T (u u,) 3% z f I 5% (U u,) =
Q 37 n, j’ B,
J J
But veSh => v = 0 on 30 => B . 0 in each B,,
0 X J
9 oV _
so ) I I ™ (u uI] % 0.
37 7By



For each Aj we transform (x,y) =+ (£,n) by msans of a translation

and enlargement so that A, = Q, the guadrllateral inlroduced in Section 2

J
{see Fig. 3).
)\7 (lJ)
h
: Ve T N
| — (0.()) X /(:' o) S
(Figure 3) (o4}

Here and in later sections we adopt the notation that the image of a function

wix,y) transformed in this manner is written as wlE,n) = wix(g,n), y(&,m)).

Clearly the Jacobian-%%%L%% of this transformation is h? and

5w/3x = h | ow/9E. Further
~ k-1 k .
|w|k,Q = h |WIK,A. YweH (Ay) (3.8)

it is dinstructive to note the rble of (3.8) in what follows and compare

it with the corresponding result on norms :“\ZJ"k Q < Ch—1l|w||K I
» ’ j
We have
' 3, .oV . “1 B~ ~ o =13V, }
J [ 5§(u UI]5§'dx dy = f J h Sz(u uIJ h 3 hedgdn
A, N
J
: f fQ 3%(5—GI]§% dEdn = F(uW) say.
Now |U_BI|1,Q < |C1|1 0 * ]aI|1,Q (*)
s fuly gt clily, g ()
sc fullyq (*)

(where lemma 5 has been applied separately to the 2 triangles on either

side of n = 0 which make up @), and so |F(G]l slls%

. oV
(U—UI) " 0,0 "-é% ||0'[;]

< c|[ﬁ||8,0||05||0‘Q ‘ (3.9)(*)



Further F(g) = 0 quPS(QJ.

For ®v/9f = v(1,0) - V(0,0) is a constant over Q, so that

F(q) = av/dk f J 3% (q—qI)dEdn. We now use:
Q

Lemma 7 Let G, be the gquadrilateral with vertices (0,0), (g ,n),

/\v

(h)?+)

}
5

//
(};)?_) (Figure 4)

Proof If qeP, then 9; = d (i.e.
So if G can be shown to annihilate &2, &n
of P3 and hence the whole of P,.
But if g

1l
n

£2 then 6G(q)

m

Hi

if En then G(q)

s
1

(n>0)

-+

i

(1 ()|

(n<0)

0 0 , 0
g = n2 then G(q) = I f Zn-n |+ J J nn_J = E—[“ni +n2] /= 0;

(1,0}, (g, »n,), as in Fig. 4,

such that EYE. =1, n,*tn_ = 0.

The functional

G(g) = f J (jp~j@I)dgdn= 0
Qm

(3.10)

quPS(QmJ.

Note: The conditions on E+,n+

are

precisely that Dm is a parallelogram.

linears are interpolated exactly).

and n2 then it annihilates a basis

3
1.5 o e

n o\ [ gtn2n2] y
[(eme)-( . g
E[[1—2£+]”+_H—25—)n—]

(n>0) (n<0)

this completes the proof of the lemma.

By (3.9), (3.10) and lemma 6

F@al s ¢ [ilg,ql ¥l -

..10_
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Transforming back to (x,y) co-ordinates, (3.8) gilves

) d
| f f 3 v g axdy| s oon? ulg v 1,
AJ : !

and so
) Vv
|JI-—[wu%— cen ¥ fuly, - v, |
0 X I" ax i ,Aj X U,Aj
s (*)

< ch2(J[ul 2, y3 T v I, 2)
ERAT R Y

(Cauchy-Schwarz)

< ch?2 i *
v ful v, I, )
An identical estimate holds for [ I 53—(u-uIJ %%— , 80 that (using Cauchy-

Q
Schwarz again)

Ia(u-uI,vJI < Ch2|u|3 |V|1 ; (3.12)(*
recall that this holds for any veSE.
: - 2 1= - -
Finally |uI uhl,| alup-up, up-u ) by (3.3

— - e - h
= alu uh,v] where v Up uheSO

I

= a(uI—u,v] by (3.2) and (3.4)

IA

Ch2[u| o |v[, by (3.12)

= Ch2[u|3 IUI—uh|1

A

and so |u Chzlul3 as required.

17404
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4, THE SUPERCONVERGENCE RESULT

Fn Theorem 3 below, Theorem 1 is used to prove superconvergence of the

gradient of u-uh. We also make use of the corresponding superconvergence
result for u—uI; this ds given first. In this section g, h, Sg, u, Ug

and u, are as defined in Section 3.
If T is any triangle we write S(T) for the set of midpoints of the
sides of T. If PeS(T) we write DPu for the componment at P of

Vu parallel to that side of T.

Theorem 2 Let T be any triangle in the covering of § and let

PeS(T). Then
D tu-up) | < ceh lulg ;- (4.1)

Proof We transform (x,y} = (&,n) by means of an affine transformation
so that T =+ A, the triangle introduced in Section 2, and P = (31,0).
The Jacobian J = %%%%%%—

also IDPWI < h_1 |a®/agl

of this transformation is h2,

(1,0) (4.2)(*)

and e lwl\ 7 (4.3)(*)

A

i
(This statement is weaker than the corresponding (3.8) because of the

possibility of shearing the (x,y) system to map T - A appropriately).

Let F) = 5% (000 ey 0
29
N ou
Th N ou T (*)
- FOOT < 158l (1,00 *l5g]
< max  |vu| + |vu,| (*)
A

< C!Lzﬁllz At C||ﬁ||2 A (by Lemmas 4 and 5)

scloly, (4.4)(%)
Further F(q) = 0 quPS(A]. (4.5)

For if qu2 then Qr = 4 (i.e. linears are interpolated exactly)}.

Also F(E2) = (2£-1) = 0, F(&n) = (n-0) =0 and F(n2) = (0-0) = 0.

(3,0) (%,0)

Hence F annihilates a basis of P3 and therefore the whole of PB.

...12..



By (4.4), (4.5) and lemma 6

IFco) | sc |J|3'A .

!
Transforming back to (x,y) co-ordinates, (4.2) and (4.3) give
|D_(u-u.) | s h! [F(a) |
P I

seh il

< Ch |u|3 T as required.

Theorem 3 (Superconvergence). Under the above conditions

- 2 1

h{ ) o, (u-u 311 * < c.h2 Ju
PeUS(T) 3 | 6 lu]3
Te )

Proof The functionals DO, Peu S(T) are locallybounded in the 1-

. . . . 5 h
seminorm on the space of piecewise linears. For if wveS

0 and Pe S(T)

for some Tcf then

|DP(\/)| < |wlp
= |v|1 1/ (meas. T]’lz
-1
< Ch |V|1,T .

Substituting v = Up=u. squaring and summing we get
§ |botu_-u |25 ch™? |u,-u |2
P*"I "h I "h'1
p
< Ch? IUI% (by Theorem 1).

Also, squaring and summing the result of Theorem 2 over all P,

E IDP[u-uIJ|2 < Ch? IUI% v

Finally, the linearity of the functionals DP gives

DP(u-uh] = DP(u-uIJ + DP[uI—uh]

and by the triangle inequality
g | DpCu-u )| 2 < 2(§|DPfU”UI)|2 + %'DP(UI_uh]Ié>

-13-
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whence by (4.8) and (4.9)

ZIDp(u-uh]lz < Ch2 Iul%

: P
and so h (i IDP(u—uh)l£>% < Ché |u|3 as required.
P

5. OPTIMALITY OF ERROR BOUNDS

Some stages in the proofs of Theorems 1-3, indicated by (*), are weak
in that they lead to unnecessarily large values for constants such as C4.
This is because they follow the non-constructive approach which is usual
for superconvergence proofs (such as Z18mal’'s) and which tends to hide major
inefficiencies of proof. Two prime examples are the use of the triangle
inequality (lu—uII < |ul+ |uI|] and the weakening of norm bounds
(e.g. IG|1,Q Sllal|3,Q) in the derivations of (3.8) and (4.4). In consequence
it is possible that, given values for the constants C1 and C3 in Lemmas 4
and 6, the final superconvergence bound could be non-optimal by as much as
an order of magnitude for a problem of practical size.

We derive here optimal bounds corresponding to those parts of the
proofs of Theorems 1 and 2 referred to above. This alternative approach is
based directly on Taylor expansions and has the additional advantage of avoiding
the non-constructive Bramble-Hilbert lemma. We start with an alternative
derivation of (3.11).

We take Q to be the quadrilateral introduced in Section 2 and Q+, 0_
to be the intersections of Q with the half-spaces {n > 0}, {n < 0}
respectively.

We define K(&,n) = E-n in @

+ (5.1)
E-n-1 in @

and take ¢, to be a solution to the boundary-value problem

-V2%¢, + K/2 =0 in Q
(5.2)

a¢*/8n = (0 on a[;]
-14-



Theorem 4 Let  GcH3(Q)  and consider the functional
F(o) = =0 (U-0.)dEdn, where U, interpolates G in each of Q , Q .
Q E; I I + =
|
Then F(a} = f J K(CE,n)  ¢lE, n)dedn, (5
N
where ¢ = ugn.
and IF(UJI < C7|¢|1,Q i (
where C7 = 2|¢*|1 g’ this bound is attained when¢ = ¢,.

Notes: (i) Although ¢, 1s only defined up to an additive constant,

|¢*|1,Q is precisely defined.

{(ii) Numerical solutions of (5.2) indicate a value of C

7
between 0.137 and 0.138.
Proof (For ease of notation we drop the ~ J.
F(u) = =5 (u-u.)d&dn
oE I
q

= [ ug,nldn - u(1,0) + ul(o,0)
aQ
/l

= J f(n)dn
0

where f(n) = u(1,n) - uln,n) - ul0,-n) + ult-nn,-n) - u(1,0) + u(0,0).

We use Taylor's theorem (Lemma 1) with a change of integration veriable:

n
ul1,n) = u(1,0) + f u (1,t)dt
U n
n
uln,n) = uln,0) + [ u_(n,t)dt
o (see Fig. 5)

0
u(0,-n) = u(0,0) - f u (0,t)dt
N

it

0
ul1-n,-n) = u(41-n,0) -~ J u (1-n,t)dt
-n n

_15..



n
ao that f(n) = [ (u (1,£) - u (n,t)dt
0 n n

0
* [ (u (0,t) - u (1-p,t)ct
o M n

+ u(1-n,0) " uln,0).

We employ Taylor again:

1
u (n,t) = u (1,t) - J u, (g,t)dg
n n n &n (see Fig. 5)
1-n
1-n,t) = 0,t ,tld
u (1-n,t) un( ) o+ [0 ugn(g Jdg

(Note that ueH3(Q) and.so line integrals of second derivatives do

converge, by the trace theorem (Lemma 2)).

n 1 0 1-n
Therefore fln) = ( ( U (g,t)dedt - [ f u, (g,t)dgdt
t=0 Jg=n °" t=-n 'g=0 "

+ U(']—n;[]) = U[T],O)

1
and since I (u(1-n,0) - uln,0)dn =0 we have
0
1 n 1
F(u) = J I f $lg,t)dedtdn
n=0 7t=0 7 &=n
1 0 1-n
- f [ [ ¢(&,t)dedtdn.
n=0 ‘t=-n 7&=0
[
Y
//// (Figure 5)
(7!7) \ (’l(l)?) |
: : Cancellation via Taylor's theorem
Leazld is .indicated by ------ for the first
I : stage
ol
L
(qo) | Q-%O} Ghm,; JELW -----=- for the second

W

e e - T
o e T

(op0h ¢
—' - -18-




NOw tne T1rst Llntuoplidl L9 byudl Ly

1 1 1
f I [ (g, t)dEdndt (re-ordering the first two
t=0 ‘n=t “&=n integrations)
1 1 E
" ( [ I ¢(£,t)dndgdt (re-ordering the second two)
t=0 /&=t ‘n=t

i

1 1 '
f f (e-t) ¢lg,t)dedt
t=0 ‘&=t

[Q (£-n) ¢(&,n)dEdn (writing n for t);
+ .

)

similarly the second is equal to

"

Hence Flu) = I I Ko as desired.
v

We want to find the constant C_ such that (5.4) holds and is as sharp

m

lely,g

as possible. In other words,

C7 = sup

the supremum 1s over ueH3(Q), i.e. ¢eH! ().

This is equivalent to 0;1 = inf

decHT(Q)
] [
A

|¢|1;Q (5-5]

..17—.



Squaring (5.5), if we find a peir [¢A;A)EH1(Q] x R which minimlses (w.r.t. ¢A)

[IQ 20,12 + 2Ky

(5.8)
subject to [ I K¢, = 1
A
Q
then %= ff [ve |2 .
7 —~X
N
Now the function ¢, diptroduced above (5.2) satisfies
f J (Vo + VP + K$/2) = 0 vyeH (@) (5.7)
y
and is thus an extremal of
I[ |vo. [2 + Ko . (5.8)
N

Indeed, the second variation of this functional is J [ |vy|2, which is
8
always non-negative, so that ¢, minimises that functional over Hq(Q].

Therefore, comparing (5.6) with (5.8],

¢)\ = Ay

Pausing only to take note that f [ K(X¢,) = 1 and that [ f | V4, ]2 =
q N

- f J K¢,/2 [(substitute ¢, for ¢ in (5.7)), we have
N

S NG
C Vo, |
7 9 A
AZH |V, |2
Q
_>\2 f[
Ko
£ 9

T
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and finally

(]
1i

3
v [ [ ke
/ 0
(4 J f Ly¢*|2J%
Q

= 2lee 1y

Hence lF[uJ] < C7|¢|1 Q and the bound 1s attained by any ueH3(Q)

satils

fying

UEn

= by

We move on to the alternative derivation of (4.8). We take A to be

the triangle introduced in Section 2 and T to be that part of its boundary

94 for which n = 0. We define
K(E,0) = £ (g < 3)
(5.9)
£-1 (g > 3)
on TI' and take ¢, to be a solution of the boundary-value problem
-V2¢, = 0 in A
9¢,./9n ={-K/2 on T (5.10)
0 on oA\T
where 9/9n represents differentiation along the outward normal.
Theorem 5 Let  UeH3(A) and consider the functional
F(u) = —2-(6-5 ) , where U, interpolates u.
& I i I .
(E;O]
Then F(U) = f K(g,0) ¢(&,0)dg, (5.41)
T
whe = U »
here ¢ £E
and [F(w] < ¢, oy, o (5.12)
where Cg = 2|¢*|1 , ¢ this bound is attained when ¢ = ¢.
Notes: (1) As above, |¢*|1 A 1s precisely defined.

(11) Numerical solutions of (5.10) indicate a value of C in the

8

region of 0.12.



Proof (Again we omit the ~ ).

= _B_U_ 1 - 0
I)’(%,O) T (3,0) u(1,0) + u(0,0)

By Taylor's theorem (Lemma 1) with a change of integration variable,

F(u) = —Q (u-u
ot

1
u(1,0) = u(4,0) + %ug(%,01-+ I u_ (g,0).(1-g)dg

123

u(0,0) = u(%,0) - 3u_(3,0) + I u_ (g,0)eg d

3 3 £ 2 0 3 £ £ dg

Therefore F(u) = J k ¢dg as required. We now proceed precisely
r

as in Theorem 4 above. CB is such that (5.12) holds and the bound is

attained, whence

C—1 _ inf .
8~ ¢eHl(a) lol4 ,
If K| =1
r
if (¢,52) € Hq[AJXIR minimises [ f |V¢ |2 + Af K¢
A 5 10 Ko
subject to ( K¢, = 1
A
T
-2
then CB = I [A Izq)llz

The function ¢, defined by (5.10) satisfies

[ [ Vour VY * 3 ( Ky =0 Vw€H1fA]
A - r

and is thus an extremal of

[0

As before the second variation is non-negative, so that ¢, minimises that

functional over H1(A). Hence
¢A = Adys
also J K (A¢,) = 1 and (from (5.15)) f f |9¢,]2 = -4 J Kb, -
T A T

=2

Exactly as abave, C8 = I [ |Z¢A|2 =
A 2i K,
r

_20_
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whence finally C, = 2|¢*|

o 1,4

So [Flu) | s C4lel, 4 and the bound is attained by any uci3(a) satisfying
gg = b

Remarks

(1) We note thalt these two results depend on the error functional being
written in the form F(o) = J K¢, where ¢ is one of éhe second derivatives
of U and J K = 0. Clearly it would be possible to write F = la%ﬂj Kaq;(o‘],

where o represents a 2-index, by means of Lemma 3. However, the weights

Ka are neither cheap nor simple to evaluate. Also, given 4 and ?U
Ol ) 1)
the best possible direct result would be IF[ < 1[K |E U¢ 0L||O i
o
o)1 .
in examples of this type it is unusual for ) (Key) = 9 (K and we
an ?ﬁj 0L (U
0 1

would not expect the resulting bound to be attained. So a&lthough this alternative
form implies |F(U)| < cC|d] 5, (where R is either 4 or @) it is of little
help in evaluating C optimally. Our approach exploits the full smoothness

of U only indirectly, taking Taylor expansions with only the second
derivatives of U in the remainder term. The success of the scheme is
undoubtedly due to the special nature of F, in particular only one component

of the gradient is being estimated and there is sufficient cancellation

of error terms for F to be bounded by just two of the four third derivatives
of U. This last property leads to second order equations for ¢, instead

of the fourth order problems which occur in the examples considered by Meinguet.
In [12] he presents a method based on direct manipulation of the remainder

in the smoothed Taylor expansion of U; this ds more generally applicable

than the above but is definitely non-optimal and results in bounds which are
considerably weaker. For example, we can write (5.12) in the form

IF(L]I < (0.12) x laEEI an analogue derived by direct manipulation is

1,4 7
IF[L]] < (1.05) x |ﬁg|2 I Incidentally, both approaches are significant

advances on the Sard kernel/Schwarz inequality method of Barnhill et al [3].
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(2) The results of Theorems 4 and 5 are optimal in the sense of Golumb

and Weinberger ({101, in that they gilve values of constants -for which the
boundsi(5.4) and (5.12) are attained. The continuation of this optimality
to the results of Theorems 1 to 3 is discussed below; we note here that, as
they stand, these theorems are not optimal in the above sense. This should
not be taken as a serious flaw, since the calculation of such optimal bounds
would be highly impractical. We would rather strike a balance of "quasi-
optimality” between the optimal efficiency of Golumb and Weinberger and

the less efficient simplicity of Zl&mal's approach.

It appears that the steps marked (*) in the proofs of Theorems 1 to 3
fall into three categories, one of which (stemming from the non-constructive
route) has been dealt with above. The second is that of pure inefficiency
in the names of brevity of proof and ease of notation. Examples are
in the derivation of (3.12), |w|, < Chk_1|w|k,T in (4.3)

K,A™
DP[VJ| < IEVI[T] in the derivation of (4.8). These can all be corrected:

K P R e

and
by the introduction of a more cumbersome notation and long-winded proof,

a rotation-invariant definition of norms and seminorms, the use of more than
one model triangle A, etc. We also note that, in Theorem 5, there may be
something to be gained by bounding F(U) in terms of the values of derivatives
of U in both the triangles of which the sampling point is on the boundary.
However, there is little point in burdening the proofs with such details while
more intransigent shortcomings remain.

The last type has just two instances, the (double) use of the Cauchy-
Schwarz inequality in the derivation of (3.12), e.g. Z |UIS,A IVI1,A. <
(Z|u|3'i:3% (2|v|1,i.]% and the use of the triangle inequaliiy to obiain
(4.10). JIn both cas;s it is likely though not certain that the bound is sharp,
but unlikely that it is attained by that function ueH%(Q] which attains the
optimal superconvergence bound (4.7). Unfortunately both these stages are

essential to the structure of Z1&mal's approach and cannot be avoided. So it
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1s at thils point that we arc forced 1nto some degree or non-opltimalily;
we can only rely on numerical evidence to measure the serlousness of this

retreat.

6. POINTWISE SUPERCONVERGENCE

We move on to consider one of the central features of the superconvergence
result. We have shown that in a mean square sense the points Pe US(T)
T
are tangential derivative stress points. This result can be weakened by the

Cauchy-Schwarz inequality to give superconvergence of arithmetic-mean error

(corresponding to Z18mal's earlier results):

il 1
I |Dotu-ud| < (ffpgtu-u ) |2 F (31207
P P P

< chluf, -cn”’

and so h?) IDgtu-u)| < ch?fu], . (6.1)
P

Indeed the more general Holder inequality gives superconvergence of averages
based on lq norms, 1 € q £ 2 (g = 2 being the result of Theorem 3); on

the other hand it is not clear whether there exist corresponding results for

max

higher norms [zq, g > 2) and in particular for the supremum norm, PeUS(T)

IDP(u-uh)l.
Even if it is possible to bound these individual guantities it is not clear
what form this bound would take. It is therefore convenient to relax the
notation and work with orders of magnitude rather than inequalities.
We must impose a further smoothness restriction on u. For the statement

of Theorem 2, namely IDP[u—uI)I < Ch|u|3 T does not imply O0(h2) gradient

s o .
convergence at P unless ueH (Q), s > 4, in which case

. N ’ 2
|Dp(u-u )|2 < Ch «} I RL@) 1 (_§>J g]
’ : frj=3 )7 DR3X dy
-\ 57,
< ch2-sup k;fi <Ji> ;‘ . (meas T)
Q itj=3ReX 3y
s - ful2 - e,
i.e. |DP(u—uIJ| < Chzllul|s )
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Under these cilrcumstances pointwlse superconvergence occurs egquivalently
in the quantities [u-uh] and (ul—uh). Furthermore, thers is numerical

evlidence that 1f u does not satisfy this smoothness constraint then the
error in pointwise sampling for [u-uh] is worse than 0(h2). (That this

2]5/2). We will

holds for (u-uj) can be shown by considering u = (xZ+y
therefore discuss the convergence of DP(UI—uh] under the assumption that
ueH®(Q), s > 4.

The relaxed-notation version of (4.8) is h(Z|DP[uI—uh)|2]15 = 0(h2).
Though this does not imply |DP(UI—uh]| = 0(h2) VP it does give
]| = 0(h) VP. Further the number of points P  at which the

convergence rate is no better than O(hk] cannot be greater than O(h2(1—k]].

|DP(UI—uh

So the proportion of points PeuUS(T) at which second order convergence
of IDP(UI—thI does not cccur is 2(1), i.e. the number of such points
is o(h—zl. The only natural ways of selecting such a limited number of
points would be in a layer close to the boundary 9Q or in narrow regions
in the interior of & where the smoothness of some aspect of the problem
or its method of solution was open to question. If all such aspects are
sufficiently regular in the interior we can claim that superconvergence will
be pointwise (away from the bcundary) as opposed to only in mean-square.
Further if the boundary end the conditions imposed on it are sufficiently smooth
and well represented then superconvergence will occur at every point P in
US(T). It should be stressed here that such terms as "narrow” and "sufficiently
zegular" have not been defined. 1In particular there might be severe restrictions
on generalisations of the model problem.

We consider possible methods for proving pointwise convergence, recalling
that it is not clear what form such bounds would take. We .seek modifications

to the 22 proof in Theorem 3 and note that the summation which leads to an

averaged error bound is necessary because of the form of (3.7). Unfortunately
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(3.7) 1is a sharp result as regards order of convergence (this can be
shown simply either analytically or numerically). Also there is no bound

of the form < Ch2|u|S R’ TR, diam (R} = O0(h), for some

lup-uy Iy, 1
seminorm I‘Is' For although "uI—uh "1 T vanlshes when UePB(TJ and the

mesh is sufficiently regular near T (indeed under this set of conditions

u. = u_), the most local bound that can be obtained on -u.-u is of the

I h I"h

form given by Nitsche and Schatz [16] : scthull, g+ lu

||“I””h "1,T I Y "-S,R]

for some positive integer s. They note that although HUI-uh “—s R

may have a high order of convergence it would usually be bounded via

Bramble-Hilbert lemma applied directly to "uI-uh ||1 T will not yield even

s at any rate it cannot be bounded locally and so the

—SJR s " ’ I _S;Q

an 0(h) convergence.

It appears therefore that an intermediate stage stronger than Theorem 1
is necessary. Methods based on the approximability of the Green's function
(see [15] for references) look hopeful but are not yet strong enough to handle
the cancellation effects between elements necessary for obtaining a sharp
bound on lu

Ul 7

7. SAMPLING AT CENTROIDS

We discuss here Moan's claims about the location of stress points;
since we have second order convergence of IDP(u-uh)I for almost all Pe$S[T],
we can show that there cannot be such a rate of convergence at the centroids
of the elements.

Note first that it is not reasonable to expect particularly good
convergence of just one component of the gradient at a centroid, because there
is no single direction for such a component which can be chosen in a natural

manner. So it is sufficient to show that the component of z[u—uh] parallel

to one triangle side is no better than 0(h); the same will apply similarly
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for a second side and component and hence by the above Tor all naturally
chosen components. For simplicity we will work undsr the assumption of pointwise
superconvergence, wilth its implied requirement that ueH® (@, s > 4.

We write e for the quantity 'u-u and G for the centroid of

h h’
the triangle, T, in question (See Fig. 6). The unit vector 3 is parallel

to one of the sides (midpoint P) and it is assumed that

(3-we |, = oth2).

DP(eh] hIP

L

, Ot ) (Figure 6)
._’—”—”——fﬂ“'-_ “_______> -~

e F

Since ueH3 the Sobolev representation of Taylor's theorem (Lemma 3)
gives

3-® tu]g-ulp) = ot -r f $(y)- (7 AV uly)dy + R, (7.1)
B .

where A 1is some matrix,
it is simply verified that |R| < Chlu[, o < ch2| u IL and
as before B is an open ball in T with ¢eCE(B), ( J olylddy = 1,
B

y denoting an R2 vector.

But we also have

A . .
= 3oty |p + ve | ) [§1n$g gu, is constant
in T)
=3 (Vulp - ve [p+ ve |g)
s0 that G-wul. -] ) = §evie . + 0(h2) (7.2)
= = G p J VBl . )

Subtracting (7.1) from (7.2)
. T,
G-vie | = 0th) -( [ o (y) (v A7)ulyddy + 0(h2)
o v AL

+ 0(h2) for general u.
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In fact, as 1s eesily shown, continuity restrictions imply that for any
method of approximation by plecewlse linears in R2, the gradlent of a
quadratic quB[Q) will in general fall to be matched exactly, at the
centrolds of O(h—z] of the triangles. From this 1t can be (non-rigorously)

inferred that centroids are not stress points, even in a mean sense.

8. EXTENDING THE MODEL PROBLEM

We present here a summary of those aspects of extending the model
problem which are particular to approximations on triangular elements.
We are concerned mainly with means of writing the integral a(u-uI,v] as
a sum of integrals whose terms both vanish for quadratic u and have
integrands with local support, in cases where @ 1is not a square.

For example, let us suppose that §Q is a parallelogram; we position
the co-ordinate axes so that the x-axis is parallel to two segments of 3@
and the other two segments have slope m. We partition § - into congruent
parallelograms and thence into similar triangles by means of diagonals
with (least) positive slope (see Fig. 7). (It is assumed throughout that these
triangles are non-degenerate; implications of degeneracy are noted below]).

Finally, we construct Sh

0 etc. on this mesh in the usual way.

Theorem 6 Let ueH%(Q] and let u_eS interpolate u, where g

I
h
0"

h
0
and SB are as defined above. Let veS Then Ia[u—uI,vll < Chzlu[3|v|1

holds (this is (3.12)) and, as a corollary, so does Theorem 1.

Proof Let e = u - Up -
We recall that Vv 1is only piecewise constant but that it has a
component which is constant over any pair of adjoining triangles, namely

that component parallel to the common edge. If that edge has slape m then

this component of Z_ 1s 5%—+ %;32 , Wwhence the decomposition
ale,v) = [ f VerVv
Y
Eg%x+1.@_\1’ f oz j 2.l
Jy m gx oY X
c, /C D
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where wa Llake the Cj and Dj to be adjoining pairs of triangles with
common edges of slope m and 0 respectively. As in the proof of Theorem 1
there remaln a number of integrals over single trlangles on the boundary

which disappear because v = 0 on 293Q. (See Fig. 7].

(Figure 7)

Example of a

region D,
J # —~S3lope m

- Example of a triangle on

which IL O\= 0 VveSh
m 9x 0
l
S A i _
Example of a region C,
///////4if ;

. . oV _ h
iy Example of a triangle on which i 0 VveSU

2
oy
de de . . P . J
B v Iy all vanish for each j. Once this is established the bounds on
D D.

’

We need to show that if u is guadratic then the integrals (
C

a[u—uI,v] and |uI-uh|1 can be derived exactly as in Theorem 1 and are not

reproduced here.

Now if ( Ve wvanishes for all quadratic u then so does [ g
D E

oy
J J
(by a reflection which maps a Dj onto a Cj]. But we can map each Dj
onto the parallelogram Qm introduced in Lemma 7 (Section 3) by a change of

origin and scale. Hence, by Lemma 7, r Ve does vanish for guadratic u
D

and the proof is complete.
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Remark

WF define a mesh for which the result of Theorem 1 holds for all
ueH3 to be "superconvergent”. With the non-degeneracy conditions mentioned
earlier, the superconvergence results of Theorems 2 and 3 also hold on such
meshes for all ueH3, 1In particular, the above theorem with m = -/ 3

implies that a mesh of equilateral triangles is superconvergent.

We move on to consider "chevron”" meshes, such as that in Fig. 8.
Though we examine meshes based on square-grids, the extension to paralleocgram-

grids follows the same lines as above, both here and in all that follows.
SN \\\\/////
L - b
/A
B AN

*—**-———?%r :ﬁ-A "column® of triangles

{Figure 8)
A Chevron Mesh

|

Is %

N

By "chevron” mesh we mean any mesh with exactly six elements meeting at

each internal node. This condition is sufficient to ensure that § can be
exactly partitioned into "columns” of triangles; a "column” consists of one
or more adjacent, entire columns (or rows) of the squares which make up the
triangulisation of €, such that each square in a given column is divided

into its .two triangles with the same orientation (i.e. hypotenuses in a single

column all have the same slope, +1 or -1).
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Theorem 7 Chevron meshes are superconvergent.

Sketch proof We bound ale,v)' as a sum of integrals over each of these

columns. For example, consider a column, such as the one shaded in Fig. 8,
for which each hypotenuse has slope ;1; call this region R. (Note that the
"width” of R could be anything from 1 square upwards). Then aR[e,v)

is bounded by being viewed as a complete.parallelogram—gr;d-based mesh with

m = -1; a crucial point is that the Cj can exactly cover R and so there

are no left-over triangles on the "long” edges of &R (internal to §) on

wh;ch v = 0 1is not guaranteed. By symmetry the integrals over columns where
each hypotenuse has slope +1 are also bounded and so the superconvergence proof
praceeds in the usual way.

Remarks

(1) We note here that the criss-cross mesh (See Fig. 9) necessary in [8]

for high-order derivative convergence in the mixed method of Fix et al. does

not have six elements surrounding each node, cannot be arranged into columns

and is. not superconvergent (see numerical evidence in Section 9).

// N y (Figure 9)
\\\\ ////\\\\\ A criss-cross mesh similar to that
“‘\‘ AN used in [9].

(2) The superconvergent property of chevron meshes becomes useful when we
consider regions, @, which are not parallelograms. Suppose that the boundary
0@ consists of segments parallel to the x- and y- axes and the line y = X
(and relative lengths such that a triangulation, based on a square grid, can
exactly cover Q). (See Fig. 10(a). Then the superconvergent property can be

obtained exactly as in Theorem 1, with the omission of some of the "left-over"
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boundary triangles (such as the Bj). With chevron meshes, certaln reglons @
are superconvergent whose boundaries consist of segments parallel to the axes
and both lines y = +x. The condition on such reglions 1s that a partition of
2 into columns (as above) must exisl, such that in columns where there are no
element edges of slope -1 there are ndvbéundary segments of that slope,
likewise for the slope +"1 (see Fig. 10(b)).

Because of this necessary restriction it appears that no mesh on an
octagonal region is superconvergent (Fig.4q0(c)). This case is qualitatively
equivalent to the mesh shown in Fig.10(d}. Here, making the minor smoothness

assumption on u that ueHs, s > 3, we obtain at best

3/2
™

Ia[u-uI,v]I <C ulg |v|1

1
This 0(h®) drop in accuracy is numerically confirmed in the next section.

//// (Figure 10)

/
Vv
7

2N
NN
- N\

(b)

v

SN

(a)
These two meshes are supercaonvergent
\\\s /'/1
////’//// [//// ;
A |7 -
e o
///f/////f/// P j[h
JERH LRSI, 1 SR, | A - ti.___l_
///////,////////’///1 /
(c) . ()
The triangulation cannot be completed This mesh too is not superconvergent.
So as to give a superconvergent mesh. Note that there are internal nodes whici

are not surrounded by six elements.

] -31-
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(3) It is to be expected that the above triaengulation considerations are
irrelevant in the case of Laplace'’s equation on the square. (The boundary data
can no'longer be homogeneous - we will assume thet they can be represented
exactly in a piecewlse linear subspace SE of H'(Q)). As this 1s rather a

special case it is analysed in the appendix; again there is supporting

numerical evidence in Section 9.

We turn now to a brief mention of those extensions of the model problem
which are not particular to approximations on triangles. The case of general
self-adjoint problems with mixed (homogeneous) boundary data follows [23]
exactly and is not reproduced here. The effects of numerical quadrature and
domains @ which are such that the solution mesh must be placed on a curved
grid (for example, regions with curved boundaries) can be dealt with as in [24],
however the details have not been resolved and it is not yet clear what
restrictions would be necessary on the order of integration and on the regularity
of elements. The representation of non-homogeneous boundary data is not
considered in the literature with regard to superconvergence although it is
important and will require investigation. In the case of Poisson's equation,
the above extensions are demonstrated numerically in Section 9.

We conclude this section with a remark on triangle degeneracy. If we
apply the method of Theorem 2 to any triangle T with least angle o and

maximum and minimum sides h and h . , the result (4.1) becomes (after [6])
max min

2
max

IDP (u-uI]|s C (8.1)

lul,7 -

Ni=

hmin(sina)

Under the restriction sin a = Cg > 0 (an absolute constant over all

triangles), h . /h is also bounded away from zero and (8.1) reduces to
min’ ‘max :

(4.1); similarly the results of Theorem 1 and hence Theorem 3 still hold.
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Bz NUMZRICAL EXAMPLES

In the examples that follow we investigate finite element approximations
to Polsson's equatlion with non-homogeneous Dirlchlet boundary conditions.
In each case, we consider a reglon @, a serles of triangulations with
decreasing parameter h and a given function u on Q. For each triangulation
we define Sh to be the pilecewise linear space which interpolates values

E

of u at the boundary nodes (i.e. along 9Q). We take uIeSE to be the

interpolant of u and wu eSh to solve

h™"E
alu ,v) = (f,v) VveSh (9.1)
h: 2 h UJ
where al(-+,*) and SE are as defined in earlier sections, [."]h is a
numerical approximation to the L inner product (+,¢) and f i1s the

2

(known) function equal to -V2u.
(1) We take Q2 to be the unit square (0,1) x (0,1), triangulated as in
Fig. 1 (Section 3).

Let s

1.3 (x-1) + y. We will consider exact solutions u given by

sign(s) s for a = 2,3,4

u

(so that ueH®(Q), U%Ha+1(QJ]. For each value of o we solve (9.1) for

1 1 1 1

the range of meshes given by h = 35 T TE

and display in Table 1
the observed convergence rates for various measures of the error in
gradient sampling. (Unless otherwise stated, the numerical quadrature

scheme (+,°) has 7 points per triangle and is of order 5, in all these

h

examples).
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o,

u = sign(s) s ;8 = 1.3(x-1) + y.

a = 3
1 i
() ID_[u—th |2/m) 2 1.15h1¢5 2.2h2 3.2h2
g P
max 7h1+8 2
- 2.3l 2.7h 11. 4h
P 'DP(U ‘.Jth !
1 .
(ZIDP(u-uI]Iz/n]z 0.69h1"5 1.3h2 2.55h2
4 :
max 2 2
- . 2.15 10. 4h
o |Dptu-ull] 1.71h 15h
- 23 3.60h 5.60h
lu-uply g 2.35h
_ 1°5 5212 . B5hH2
| u; uhl,l’ﬂ 0.87h 1.52h 1.65h
Table 1: Gradient errors when true solution is

(n(= O[h_zl is the number of mid-points Ru S(T), Tcq.)

Our first observation is that ueH3
superconvergence; ueH%
However, even when U¢H3
than global sampling.

max
p

improvement is more marked).

sampling the gradient of the interpolant uI

and that when both the L

5 and LOo
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(At the pessimistic end - o

errors are 0(h?)

:2,h=

is indeed a necessary condition for
is necessary to guarantee the pointwise result.
the midpoint sampling procedure is considerably better

1/3 - we have

|D(u-thl * 0.47 and |u—uh|1 Q° 0.7%; for reasonable values of h the
Two general points are that the error when
tends to be léss than that of

Lhe mean-square error



(2}

is usually smaller than the polntwise error by a factor of betwesn two
and five. All the above features have been confirmed in a variety of

other examples.

We note from this example and others that, as mentioned in Section B,
0(h2) is the greatest rate of convergence which we can expect for
|uI-uh y for general u (so that in this sense (3.7) 1s sharp). It is

also of interest to compare these observations of with optimal

lup=up [

predictions based on Theorem 4, which when followed through in the manner

of Theorem 1 give

1
lupuply = 2%cpmn2efu 1 o '

For o = 3,4 we have |u = 12.79 and 25.41 respectively,

xy|1

predicting IUI—uhI1 < 2.50h2 for o= 3
N < 2 =
and ug uhl1 < 4.96h for o = 4

The observed improvements on these figures are due to the loss of optimality

- in the derivation of (3.12) noted in Section 5 and to the smoothness of

u (especially for o = 4, ueH*) when compared with that function whose
restriction to each triangle pair Aj maps onto the quadrilateral Q

to give the function ¢, Ffrom Theorem 4.

We have hitherto considered the success of the midpoint gradient sampling
scheme only in terms which are open to analysis: the optimal sampling
location is specified and the error there measured. A quite different
situation arises if we specify an "ideal” error (i.e. zero) and then measure
the locations of sampling points which yield this error. To be specific,
for each element edge we locate that point (assumed unique) where the
component of Zﬁu-uh) parallel to that edge is zero ("the zero point"”)
and denote the ratio of the point's distance from the midpoint to the

half-length of the edge by d (see Fig. 11)}. We divide the range

R T e ST LRI TR WPERPee



0 £d=< 1 into smaller intervals and tabulate against d the number
N of zero polnts in each interval for the set of element edpes.

We expect the distribution N/d to be clustered around d = 0 (zero
points should be close to the midpoints) with a weaker grouping in non-

superconvergent cases.

In this example we take &, u, u to be as before, with o = 2,3,4

h
and h = %,-;. We display the distributions N/d in Table 2. For
example, when o =2, h = % we find 20 zero points in 0 < d < 0.05,...,

none in 0.75 < d £ 1 and three element edges where there is no zero point.
(Element edges connecting two points on the boundary 89 have errors
which are pure interpolation; zero points from these edges are not

included in the distribution tables).

We get a picture which does not completely match expectations. Zero

points appear to be clustered around midpoints even when there is no
superconvergence; this may be because this measure of error is not greatly
influenced by large errors in a small region of Q. The grouping deteriorates
8s a increases, indeed it appears from this and other examples to be

very sensitive to properties of u and @ other than those directly

connected with superconvergence. So although this example does lend

L//// (zero poi _J////’ (Figure 11)

— 1 7 T—— d = ID_ZJ

/l \Y p 2 A |DV|
(midpoint)

further weight to the policy of sampling components of the gradient at
midpoints of triangle sides, it goes a fair way towards deflating the

philosophy of "superconvergence if and only if...".
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Table 2

¢ Distribution of zero points,

u = slgn(s)
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(3) We given further evidence 1n favour of midpoint sempling even in the absence
of superconvergenca,
(a) We take @ to be the unit square, triangulated as in Fig. 9 (see

remark 1 to Theorem 7, Section 8), we let u = (x-0.75)2 + (y+1)2 and

solve (9.1) for h = %,..., %-. As predicted, there is no second order

gradient convergence: we observe
1 :
2
(é D, (u-u)2/n)* = 0.26h

(Note that DP[u—uIJ = 0 VP because u 1is quadratic; idi.e. there is
no interpolation contribution to the error).

(b) We take § to be the truncated unit square triangulated as shown in

1 1

Fig. 10(d) (see remark 2 to Thecrem 7), and solve (9.1) for h = TS

N =

with u as above. Predictably, again, we observe

1 372
(Z IDP(u—uhlz/n|)2 « 0.20n7°,

Zero point distributions from these two examples are shown in Table 3.
We see that even though neither mesh is superconvergent there is a
strong grouping of zero points around the mid-points. (In case (b)
where the required conditions on the mesh are only violated locally - on

the boundary - the grouping is particularly good).

(4) To confirm that superconvergence is not lost for Laplace's equation when
mesh conditions are relaxed (see remark 3 to Theorem 7), we take @

to be the truncated square again, triangulated as above, and solve (9.1)

1
T D 1

|

1
for u = log ((x-0.75)2 + (y+1)2)%, h Superconvergence

o

il
is observed, with () |0ptu-u )2/n)® = 0.043h2.
P

(5) We investigate the effect of relaxing the order of the numerical
quadrature (',')h in (9.1). We take Q to be the unit square,
3,2

triangulated as in Fig. 1 and let u = ((x-0.75)2 + (y+0.1)2) /, solving

(3.1) for h =-%,..., ?%. With the usual fifth-order scheme we observe
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: Zero points for criss-cross mesh and

truncated square (both non-superconvergent)
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(6)

(z |D (u—ul)lz/n)% ® 0.30h%; with a first-order scheme we observe

po P

(2 I [u—uIle/nJ% = 0.35h? (a slight loss of accuracy but no loss of
po P

order).

Finally, we Ltake a look at the other common "variational crime", that of
approximate representation 5? the boundary 99. (Note that approximate
representation of boundary conditions has been implicitly covered in all
the above examples). We map the unit square into the sector shown

in Fig. 12 by the transformation:

X
+
X
u

1
(x+2)/(1+y2/4)% - 2

<
+
<

-
n

y [1+x1/2]

The grid points are transformed in this way and then joined by straight
lines to give a triangulation topologically eguivalent to that in Fig. 1.

Note that the two curved boundary segments are not represented exactly.

,,f/’/ffr (Figure 12)

Distortion of @

- = Az

“x

We again take u = (x,-0.75)2 + (y,#1)2  and solve (8.1) for h (= mesh
spacing on xq—axisJ = %,...,?T. Once again we obtain superconvergence
with

(} |Dg(u-u )Iz/n]% ~ 0.038R2,
SR

We consider the zero point distribution for h though visually

A,
7.
0.

IA

dull it is mathematically encouraging since d 05 for all 131 zero

points.
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Egpolugion

Sfperconvergence is resistant to a surprising degree of variational
abuse, however it 1s very touchy about the mesh topology and the smoothness
of the function under approximation.  On the other hand it 1s clear from
.the experiments with zero point distributions that even when superconvergence
fails there 1s no a priori reason for sampling gradients on llnear

triangles by any other method than that of single components picked up af

triangle mid-points.
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APPENDTX : RELAXING TRIANGULATION CONDITIONS FOR LAPLACE'S EQUATION

Theorem 8 .In the case of Laplace's equation on a region § with sxactly
represented boundary data, all meshes based on square grids are

superconvergent.

Proof In the interior of © the finite element equations reduce to the
standard homogeneous five-poiﬁt finite difference approximation and
=1a) U is not affected by the signs of the slopes of diagonals within

the triangulation. We may therefore take all these slopes to be +1

and are left with consideration of boundary contributions to the error

for the mesh shown in Figure 10(d).

We consider the x- and y- derivative contributions to a(u—uI, v)

from the boundary region together (where VeSB]. For we have

Ia[u—uI,v]l < Ch2 |u[3 |V|1 + boundary term;

k]

the boundary term = z — (u-u.) — + ] (u-u.) A2
: E. X F oy I° oy
J 3 N

where the Ej and Fj are, as shown in Fig. 13, partly overlapping

palrs of triangles near the boundary.

(Figure 13)

—
T~ - Th orrespondin E,
Ny e corresp g i
9906& - One of the Fj
Note that iy el when veSh
ax oy 0
E., . F.
J J

As usual;, each integral vanishes in the cases ueP2 and u = xy. In
addition, since BV/BxIE = v/ay| g » the sum of the Ej— and

3 J
corresponding Fj - integrals vanishes when u = x2- y2. So this sum

vanishes for all harmonic quadratics (but not Ffor u = x2+y2),
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Some care must be taken in using the Bramble-Hllbert lemma here.

We write the above sum of integrals, over a single pair E and F,

J J

as the functional Au. By means of the Sobolev representation (lemma 3)

we can write any ueH3(9) 1n the form

u = 01 + 02 + R,

where @ is a harmonic quadratic,

1

Q is a multiple of £2+n2,

2

R 1s dependent on the third derivatives of u

in E, U F,
J J
and the (&,n) origin and open ball B wused in the

expansion are in Ej n Fj'

We write W for the projection

where H 1is the projection which takes any function on E, u Fj to
one with the same values on the boundary of that regioh but which is
harmonic in the interior. By trace and regularity theorems, H 1is boun

and therefore

Inul 3,E50Fy S © Il 3,E{UF 3
so that |ATu| < C[|u|I3,E 0 |V|1,E_UF_ Vu§H3.
J 3 J o J
Also, for all uePs,
Allu = Al (Q1+Q2] (since R=0)
= AQ1
= 0,

ded

(A1)

(A2)

So by (A1), (A2) and the Bramble-Hilbert lemma applied to the functional

Al  we have

|Au| = |AmTu| < ch? for all ueH3

|“|3,E UF | 'IVI’I.E_UF
J7 3

33

for which u = Mu, i.e. for all harmonic u in H3. Summing over J,
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we gt back to |U(“”UT:V)I & [Zl'l’*lul,_J |v[1 Tor all havmondc

uch3, as requilred for superconvergence.
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