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Abstract

A numerical solution method for accurately capturing material interfaces in unsteady
compressible Euler flows is presented. The method consists of a finite volume scheme
on a moving computational mesh and employs the HLLC approximate Riemann solver
to evaluate intercell numerical fluxes. The mesh is moved in a Lagrangian fashion with
the material, and to avoid the associated grid distortion scenarios, the finite volume
scheme is augmented with an algorithm to rezone the solution variables to a tangle
free mesh. The focus of the work is multimaterial flows consisting of two immiscible
materials separated by an interface. The interface position is tracked using a volume of
fluid technique, and the flow solution at the interface is resolved using a conservative
ghost fluid method.



Governing Equations

The Euler equations for one dimensional (1D), unsteady compressible flow, in the ref-
erence frame of a moving control volume, can be expressed in integral form as
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The moving control volume €(t) is enclosed by its boundary I'(t), and n denotes the out-
ward unit normal to I'(t). The vector of conserved variables is given by q = (p, pu, pE)7,
and the flux vector is f(q) = (u—2)q+ (0, p, up)”, where p is density, u is flow velocity,
% is the velocity of I'(t), F is specific total energy, and p is pressure. The system of
equations (1) represents conservation of mass, momentum and energy. The system is
completed by the ideal gas equation of state (EOS), p = (v — 1)pe, where e = E — %u
is the specific internal energy and v (1 < v < g) is a constant representing the ratio of
specific heat capacities of the material.

It is assumed that the flow consists of two immiscible components separated by a mate-
rial interface. Both flow components can be described by a single velocity and pressure
function, and each component is uniquely characterised by the value of v in the EOS.

The finite volume scheme

The spatial domain is discretised into N non-overlapping computational cells, I;, initially
of a uniform size. The average value of q over each cell is approximated and stored at
the cell centre (node). The governing equations (1) are discretised according to the
conservative finite volume formula
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Here, At is the variable time interval from time ¢" to time "', Az” is the cell volume
at time t", and a:”il are the cell boundaries. In 1D cell boundaries coincide with mesh

vertices. To evaluat2e F, 1 the cell average values are used to reconstruct a polynomial
data distribution functlon in each cell of the computational domain, and the resulting
Riemann problems that arise at the cell boundaries are solved approximately.

The mesh movement is determined by the evolution of the vertex positions. It is assumed
that the vertex velocity z; 1 is constant in magnitude and direction during the time
interval, and z; 1 is evaluated from the values of the flow velocity at the beginning of
a time interval usmg linear interpolation.

Control of the time step size is achieved, prior to each time interval, by selecting At to
satisfy two constraints. The first constraint is that At should be chosen so that during
a time interval none of the waves resulting from a Riemann problem travel more than
half a cell width of the initial uniform mesh. The second constraint is that At is chosen
so that the mesh vertices are not displaced during the time interval by more than half
a cell width of the initial uniform mesh.



The HLLC Riemann solver

The principle behind the HLLC Riemann solver is to reduce the full Riemann problem
to an approximate solution which consists of a wave structure involving four constant
states separated by three discontinuous waves. If the wave speeds of the three discon-
tinuities are known, then application of the integral form of the conservation laws over
an appropriate control volume, produces a closed-form expression for the intercell nu-
merical flux. The original derivation [7] was with respect to fixed reference frame. The
expression below accounts for the movement of the mesh.
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Here, #7 = (27! — 27)/At, Q1 and Qp are respectively the left and right data states
at the boundary 27 ., FY9 = (0,pr, ugpr)”, and Qi = (pi, plicwic, pic B )T where
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Pk = pPr(Sk — UK)/(SK — 5%, uy = 5%, px = px + pr(ux — Sk)(ux — S*) and
K = L, R. The wave speed estimates S7, S* and Si are acquired following an approach
suggested in [7].

A MUSCL-Hancock technique, involving characteristic slope limiting, is applied in order
to obtain a high-resolution flux [7].

Evolution of the volume fractions

The fractional volume, gzﬁEM), of each cell occupied by each material is stored. They are
evolved in time independently of the flow solution according to a predictor-corrector
discretisation [4] of the equation
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where Kg = yMpM) 5 = Z?M:l M) pM) g = (ZM 1 ;i((x)) ) and « is the flow
velocity relative to the moving reference frame. Equation (4) ensures adherence to the
constraint 234:1 ngM) =

The Ghost Fluid Method (GFM)

The central idea behind the GFM [2] is to create two separate computational regions, one
for each of the materials that resides either side of the interface. Both these regions are
to contain the interface and their creation is achieved using ghost solution values (GSV)
within the existing computational mesh. GSV are defined in every cell in the domain
so that at each node there is a cell average value of mass, momentum and energy for
the real fluid that exists in that cell, and a ghost cell average value of mass, momentum
and energy for the material that exists on the ‘other side’ of the interface. Once the



two regions are defined, the single material flow solver can be employed to evolve both
sets of solution variables separately. GSV are defined and discarded respectively at
the beginning and end of each moving mesh phase, with the exception of the interface
cell. GSV in the interface cell are retained until the mesh is remapped, and then the
magnitude of the updated volume fractions are used to determine which of the two
materials is valid. An important feature of the GFM is that there is no requirement to
solve a multi-material Riemann problem at the interface. The process can be optimised
for implementation by applying the method only in a band of cells on either side of the
interface.

The success of the GFM relies on capturing the appropriate interface conditions when
defining GSV. It is fundamental that their creation should not interfere with the be-
haviour of the real material solution away from the interface. The simplest approach is
to define the GSV to be identically equal to the real solution values, then the flow solver
determines a solution to a single material version of the two material problem. However,
a failing of the finite volume Riemann solver scheme is that it suffers from numerical
diffusion at contact discontinuities which degrades the results of the discontinuous vari-
ables. Following the methodology of [2] it is proposed to reduce the diffusive effect by
accepting the real values of the continuous variables (pressure and velocity) but to alter
the values of the discontinuous variables in the ghost material. This is achieved through
one-sided extrapolation of one of the discontinuous variables across the interface from a
reference state. Constant extrapolation is used in order to create a continuous variable
profile and to minimise the variation from the reference state. Based on work in [3] and
confirmed by numerical experiment, entropy is taken to be the extrapolated value. Fig-
ure 1 shows a schematic outlining the details involved in defining the GSV. An isobaric
fix is imposed by using the extrapolation technique to alter the entropy values of the
real material values [2].

To obtain a fully conservative GFM, a post processing correction algorithm following on
from work in [5] is implemented in conjunction with the moving finite volume scheme.
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Figure 1: Defining GSV using an isobaric fix. p is pressure, u is flow velocity and s is
entropy.

Remapping/Rezoning

The remap procedure may be regarded as integrating the known solution variables on
the old distorted grid over the cell of a new predetermined mesh. In this work rezoning
is performed at the end of each time step and the mesh is remapped to the grid that was



generated at the initial time level. The actual quantities remapped are the conserved
variables. In multi-material flows each material is rezoned separately and the values of
the volume fractions are modified in accordance with the transfer of data from the old
mesh to the new. The remap procedure for material M in cell I; can be expressed in
integral form as
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The overbar denotes rezoned values and Q(x, t"*1) is a piecewise polynomial function
reconstructed from the cell average values Q'*'. Equation (5) can be written as a sum
of integrals over the overlap regions between cell I; and the cells on the old distorted
mesh. The accuracy of the remap procedure is determined by the degree of the piecewise
polynomial function Q In this work a piecewise linear function is reconstructed using
characteristic slope limiting. Mesh vertices and nodes are remapped by simply returning
them to the positions they held at the begininng of the time interval. The remapping
process is conservative.

2D - Preliminary discussion

Current work is proposing to extend the presented numerical method to two dimen-
sional, unsteady multimaterial compressible Euler flows. The governing equations can
be written in integral form as
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where () is the moving control volume enclosed by its boundary I'(t), q = (p, pu, pv, pE),
f(q) = (u—12)q+(0,p,0,up), g(q) = (v—79)q+ (0,0, p,vp), and 7 denotes the outward
unit normal to I'(t). The system of equations (6) is discretised through the following
dimensional splitting
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where (07'; is the volume of cell ;; at time ", u, v, and s, 1 Ly Sij_1 are respectively
facial velocities and lengths calculated in accordance with a geometrlc conservation law
8]. FF%J and G;; 1 are numerical approximations to the time average flux across
facesI';_1; and I'; ; 1 respectlvely They are evaluated by solving the x and y split one
dlmensmnal Rlemann problem using the HLLC Riemann solver in conjuction with the
GFM. Evaluation of At takes into account wave speeds and mesh dimensions in both
spatial directions.

The principle of the GFM in 2D is the same as in 1D. However, in 2D defining the
GSV is more involved since there is more than one velocity component and a choice for
the direction of extrapolation must be made. The GSV for the pressure and velocity
components are defined by setting them equal to the real material values in each cell

in the computational domain. Constant extrapolation of entropy into cells containing
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and bordering the interface is performed in the direction of the normal to the interface.
The normal value is extracted from a piecewise linear interface reconstructed from the
fractional volume data.

The interface reconstruction algorithm is based on an approach developed in [1]. Re-
construction of a linear interface in an interface cell is transformed to a problem that
analyses a ‘local central dual’ mesh of the interface cell in question and its eight sur-
rounding cells. Each vertex in the dual mesh has associated with it the volume fraction
of the cell within which it is centred. Material boundaries on the dual mesh are found
by considering the volume fractions in ‘material space’ and evaluating intersections with
Voronoi cells that represent the regions where one material dominates. These intersec-
tions are used to calculate interface points on the dual mesh. With a complete set of
interface points on the dual mesh the interface line, created through connection of the
interface points, is transformed into a linear approximation to the interface within the
original interface cell. The position of the interface line is adjusted to ensure the correct
volume fraction is captured.

In 2D the remap procedure remains an integration problem, with each material being
rezoned separately through integration over polygonal mesh overlap regions.

At present a conservative correction algorithm has not been implemented with the 2D
scheme.

Numerical Results

In 1D, the selected test problem is a two material shock tube problem based on [6].
The initial conditions of the test consist of two constant states separated by a discon-
tinuity. The two states are given by (pr,ur,pr)? = (1.0,0.0,1.0)7 and (pr, ugr,pr)’ =
(0.125,0.0,0.1)T with v, =1.6 and yg = 1.2. The discontinuity was initially situated at
x=0.505. The numerical (dotted line) and exact (solid line) solutions are computed in
the spatial domain [0, 1] and the output time is ¢=0.2 seconds. The numerical solution is
computed with 100 cells and transmissive boundary conditions are applied. Figure 2(a)
shows good agreement between the numerical and analytical solutions. The test problem
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Figure 2: Solution plots for Density in the (a) 1D and (b) 2D tests problems.

is extended to 2D using a cylindrical explosion problem [7]. The governing equations
are solved in the spatial domain [0, 2] x [0, 2]. Initial conditions consist of a region inside
a circle of radius 0.4 centred at (1,1), and the region outside of this circle. Initially, the
flow variables take constant values in each of these regions, and are joined by a circular
discontinuity. The two states are given by (pin, Uin, Vin, Pin)” = (1.0,0.0,0.0,1.0)7 and
(Pouts Youts Vouts Pout) . = (0.125,0.0,0.0,0.1)7 with 77 = 1.6 and vz = 1.2. The output



time is t=0.2 seconds. Results are shown in Figure 2(b).
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